Low temperature causes discoloration by repressing growth and nitrogen transporter gene expression in the edible red alga Pyropia yezoensis.

[1]  K. Mikami,et al.  Difference in Nitrogen Starvation-Inducible Expression Patterns among Phylogenetically Diverse Ammonium Transporter Genes in the Red Seaweed Pyropia yezoensis , 2019, American Journal of Plant Sciences.

[2]  K. Mikami,et al.  A unique life cycle transition in the red seaweed Pyropia yezoensis depends on apospory , 2019, Communications Biology.

[3]  Saifullah,et al.  Acquiring control: The evolution of ROS-Induced oxidative stress and redox signaling pathways in plant stress responses. , 2019, Plant physiology and biochemistry : PPB.

[4]  C. Gachon,et al.  Genetic toolkits of the red alga Pyropia tenera against the three most common diseases in Pyropia farms , 2019, Journal of phycology.

[5]  Jun Chen,et al.  Phycobiliproteins: Molecular structure, production, applications, and prospects. , 2019, Biotechnology advances.

[6]  F. Bao,et al.  Effects of Chilling on the Structure, Function and Development of Chloroplasts , 2018, Front. Plant Sci..

[7]  A. Klein,et al.  Organism-environment interactions and differential gene expression patterns among open-coastal and estuarine populations of Porphyra umbilicalis Kützing (Rhodophyta) in the Northwest Atlantic , 2018, Fisheries and Aquatic Sciences.

[8]  Å. Strand,et al.  The role of retrograde signals during plant stress responses. , 2018, Journal of experimental botany.

[9]  D. A. Coury,et al.  Isolation and functional characterization of an ammonium transporter gene, PyAMT1, related to nitrogen assimilation in the marine macroalga Pyropia yezoensis (Rhodophyta). , 2017, Marine environmental research.

[10]  K. Dehesh,et al.  Retrograde Signals: Integrators of Interorganellar Communication and Orchestrators of Plant Development. , 2017, Annual review of plant biology.

[11]  K. Mikami,et al.  Oxidative Stress Promotes Asexual Reproduction and Apogamy in the Red Seaweed Pyropia yezoensis , 2017, Front. Plant Sci..

[12]  I. V. Tropin,et al.  Phycobiliproteins: Structure, functions and biotechnological applications , 2017, Applied Biochemistry and Microbiology.

[13]  K. Dietz,et al.  Redox- and Reactive Oxygen Species-Dependent Signaling into and out of the Photosynthesizing Chloroplast1[OPEN] , 2016, Plant Physiology.

[14]  K. Mikami,et al.  Isolation and characterization of a new DUR3-like gene, PyDUR3.3, from the marine macroalga Pyropia yezoensis (Rhodophyta) , 2015, Fisheries Science.

[15]  Martin J. Mueller,et al.  ROS-mediated lipid peroxidation and RES-activated signaling. , 2013, Annual review of plant biology.

[16]  K. Niwa,et al.  Physiological responses to nitrogen deficiency and resupply in different blade portions of Pyropia yezoensis f. narawaensis (Bangiales, Rhodophyta). , 2013 .

[17]  E. Tyystjärvi Photoinhibition of Photosystem II. , 2013, International review of cell and molecular biology.

[18]  K. Mikami,et al.  Molecular characterization and expression analysis of sodium pump genes in the marine red alga Porphyra yezoensis , 2012, Molecular Biology Reports.

[19]  N. Suzuki,et al.  ROS and redox signalling in the response of plants to abiotic stress. , 2012, Plant, cell & environment.

[20]  I. Vass Molecular mechanisms of photodamage in the Photosystem II complex. , 2012, Biochimica et biophysica acta.

[21]  M. Kumar,et al.  Toxic effects of imidazolium ionic liquids on the green seaweed Ulva lactuca: oxidative stress and DNA damage. , 2011, Chemical research in toxicology.

[22]  K. Sonoike Photoinhibition of photosystem I. , 2011, Physiologia plantarum.

[23]  M. Havaux,et al.  Singlet oxygen in plants: production, detoxification and signaling. , 2009, Trends in plant science.

[24]  I. Vass,et al.  Janus-faced charge recombinations in photosystem II photoinhibition. , 2009, Trends in plant science.

[25]  K. Takechi,et al.  Ammonium Induced Expression of the Red Algal Chloroplast Gene Ycf18, a Putative Homolog of the Cyanobacterial NblA Gene Involved in Nitrogen Deficiency-Induced Phycobilisome Degradation , 2009, Bioscience, biotechnology, and biochemistry.

[26]  D. A. Coury,et al.  Molecular analysis of physiological responses to changes in nitrogen in a marine macroalga, Porphyra yezoensis (Rhodophyta) , 2008, Cell Biology and Toxicology.

[27]  B. Benito,et al.  Sodium, Potassium-ATPases in Algae and Oomycetes , 2005, Journal of bioenergetics and biomembranes.

[28]  Jeff T. Hafting Effect of tissue nitrogen and phosphorus quota on growth of Porphyra yezoensis blades in suspension cultures , 1999, Hydrobiologia.

[29]  Y. Fujita,et al.  Analytical Approach to the Discoloration of Edible Laver “Nori” in the Ariake Sea , 2004, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[30]  H. Amano,et al.  Evaluation of discoloration in harvested laver Porphyra yezoensis and recovery after treatment with ammonium sulfate enriched seawater , 2003 .

[31]  P. Haldimann How do changes in temperature during growth affect leaf pigment composition and photosynthesis in Zea mays genotypes differing in sensitivity to low temperature , 1999 .

[32]  B. C. Tripathy,et al.  Temperature-stress-induced impairment of chlorophyll biosynthetic reactions in cucumber and wheat , 1998 .

[33]  H. Noda,et al.  Effect of Nitrogenous Fertilizers on the Recovery of Discoloured Fronds of Porphyra yezoenisis , 1987 .

[34]  S. Beer,et al.  Determining Phycoerythrin and Phycocyanin Concentrations in Aqueous Crude Extracts of Red Algae , 1985 .

[35]  G. R. Seely,et al.  Preparative and analytical extraction of pigments from brown algae with dimethyl sulfoxide , 1972 .

[36]  Keiji Ito,et al.  BIOCHEMICAL STUDIES ON THE EDIBLE SEAWEED, PORPHYRA TENERA-II , 1959 .