Chemical Equilibrium Abundances in Brown Dwarf and Extrasolar Giant Planet Atmospheres

We explore detailed chemical equilibrium abundance profiles for a variety of brown dwarf and extrasolar giant planet atmosphere models, focusing in particular on Gl 229B, and derive the systematics of the changes in the dominant reservoirs of the major elements with altitude and temperature. We assume an Anders & Grevesse solar composition of 27 chemical elements and track 330 gas-phase species, including the monatomic forms of the elements, as well as about 120 condensates. In our fiducial, limiting reference model, we do not assume that condensation sequesters elements at depth and present true chemical equilibrium calculations for the solar element mix. However, there is evidence in the atmosphere of Gliese 229B that it is depleted in heavy elements. To explore depletion and rainout, which are fundamentally nonequilibrium processes, we perform a series of rainout calculations in which refractory elements are withdrawn from the equilibrium in stoichiometric ratios via an ad hoc algorithm. Then we compare the true equilibrium results with the rainout results, with an eye to understanding the near-infrared spectrum of Gliese 229B, as well as the new "L dwarfs" with Teff's above ~1500 K. We address the issue of the formation and composition of clouds in the cool atmospheres of substellar objects. We conclude that the opacity of clouds of low-temperature (≤900 K), small-radius condensables (specific chlorides and sulfides, not silicates), may in part be responsible for the steep spectrum of Gl 229B observed in the near-IR below 1 μm. We assemble a temperature sequence of chemical transitions in substellar atmospheres that may be used to anchor and define a sequence of spectral types for substellar objects with Teff's from ~2200 to ~100 K.

[1]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[2]  M. Marley,et al.  Detection of Abundant Carbon Monoxide in the Brown Dwarf Gliese 229B , 1997 .

[3]  M. Skrutskie,et al.  The Coolest Isolated M Dwarf and Other 2MASS Discoveries , 1997 .

[4]  F. Allard,et al.  Synthetic Spectra and Mass Determination of the Brown Dwarf Gliese 229B , 1996 .

[5]  H. Jones,et al.  Spectral Evidence for Dust in Late-Type M Dwarfs , 1997, astro-ph/9702108.

[6]  S. R. Kulkarni,et al.  The Spectrum of the Brown Dwarf Gliese 229B , 1997 .

[7]  K. Lodders,et al.  Atmospheric Chemistry of the Brown Dwarf Gliese 229B: Thermochemical Equilibrium Predictions , 1996 .

[8]  T. Guillot,et al.  Prospects for detection of extra-solar giant planets by next-generation telescopes , 1995, Nature.

[9]  C. Sharp Molecular dissociation functions obtained from thermodynamic and spectroscopic data. , 1985 .

[10]  R. Paul Butler,et al.  A Planet Orbiting 47 Ursae Majoris , 1996 .

[11]  J. Lunine,et al.  Reflected Spectra and Albedos of Extrasolar Giant Planets. I. Clear and Cloudy Atmospheres , 1998, astro-ph/9810073.

[12]  G. Marcy,et al.  A Planetary Companion to 70 Virginis , 1996 .

[13]  T. Guillot,et al.  Atmospheric, Evolutionary, and Spectral Models of the Brown Dwarf Gliese 229 B , 1996, Science.

[14]  M. Mayor,et al.  A Jupiter-mass companion to a solar-type star , 1995, Nature.

[15]  W. F. Huebner,et al.  Molecular equilibrium with condensation. [in astrophysics] , 1990 .

[16]  E. T. Turkdogan Physical chemistry of high temperature technology , 1980 .

[17]  T. Guillot,et al.  A Nongray Theory of Extrasolar Giant Planets and Brown Dwarfs , 1997, astro-ph/9705201.

[18]  Walter Kauzmann,et al.  The Structure and Properties of Water , 1969 .

[19]  Hans-Peter Schertl,et al.  Geochim. cosmochim. acta , 1989 .

[20]  G. Rieke,et al.  The Stellar Population in the rho Ophiuchi Cluster , 1993 .

[21]  Selmer M. Johnson,et al.  Chemical Equilibrium in Complex Mixtures , 1958 .

[22]  Kenneth R. Hall,et al.  Thermodynamic Properties of Key Organic Oxygen Compounds in the Carbon Range C1 to C4. Part 1. Properties of Condensed Phases , 1985 .

[23]  I. Barin Thermochemical data of pure substances , 1989 .

[24]  M. Osorio,et al.  Brown Dwarfs in the Pleiades Cluster Confirmed by the Lithium Test , 1996, astro-ph/9607002.

[25]  A. Burrows,et al.  An expanded set of brown dwarf and very low mass star models , 1993 .

[26]  A. Burrows,et al.  Theoretical models of very low mass stars and brown dwarfs , 1989 .

[27]  X. Delfosse,et al.  DENIS-P J1228.2–1547—A New Benchmark Brown Dwarf , 1997, astro-ph/9707239.

[28]  S. Kulkarni,et al.  Discovery of a cool brown dwarf , 1995, Nature.

[29]  Theodore M. Besmann,et al.  SOLGASMIX-PV, a computer program to calculate equilibrium relationships in complex chemical systems , 1977 .

[30]  B. Oppenheimer,et al.  Infrared Spectrum of the Cool Brown Dwarf Gl 229B , 1995, Science.

[31]  A. Burrows,et al.  The effect of gas and grain opacity on the cooling of brown dwarfs , 1989 .

[32]  T. Mazeh,et al.  The unseen companion of HD114762: a probable brown dwarf , 1989, Nature.

[33]  C. Cosmovici,et al.  Astronomical and biochemical origins and the search for life in the universe , 1997 .

[34]  Liquid metallic hydrogen and the structure of brown dwarfs and giant planets , 1996, astro-ph/9703007.

[35]  Ben R. Oppenheimer,et al.  SPECTRAL ENERGY DISTRIBUTION AND BOLOMETRIC LUMINOSITY OF THE COOL BROWN DWARF GLIESE 229B , 1996 .

[36]  JOHN S. Lewis The clouds of Jupiter and the NH3—H2O and NH3—H2S systems , 1969 .

[37]  W. D. Cochran,et al.  The Discovery of a Planetary Companion to 16 Cygni B , 1997 .

[38]  T. Encrenaz,et al.  Phosphorus Chemistry in the Atmosphere of Jupiter: A Reassessment , 1995 .

[39]  Eduardo L. Martin,et al.  Spectroscopy of a Brown Dwarf Candidate in the alpha Persei Open Cluster , 1992 .

[40]  N. Grevesse,et al.  Abundances of the elements: Meteoritic and solar , 1989 .