Ultrafast fiber lasers based on self-similar pulse evolution: a review of current progress

Self-similar fiber oscillators are a relatively new class of mode-locked lasers. In these lasers, the self-similar evolution of a chirped parabolic pulse in normally-dispersive passive, active, or dispersion-decreasing fiber (DDF) is critical. In active (gain) fiber and DDF, the novel role of local nonlinear attraction makes the oscillators fundamentally different from any mode-locked lasers considered previously. In order to reconcile the spectral and temporal expansion of a pulse in the self-similar segment with the self-consistency required by a laser cavity's periodic boundary condition, several techniques have been applied. The result is a diverse range of fiber oscillators which demonstrate the exciting new design possibilities based on the self-similar model. Here, we review recent progress on self-similar oscillators both in passive and active fiber, and extensions of self-similar evolution for surpassing the limits of rare-earth gain media. We discuss some key remaining research questions and important future directions. Self-similar oscillators are capable of exceptional performance among ultrashort pulsed fiber lasers, and may be of key interest in the development of future ultrashort pulsed fiber lasers for medical imaging applications, as well as for low-noise fiber-based frequency combs. Their uniqueness among mode-locked lasers motivates study into their properties and behaviors and raises questions about how to understand mode-locked lasers more generally.

[1]  G. Millot,et al.  Selection of Extreme Events Generated in Raman Fiber Amplifiers Through Spectral Offset Filtering , 2010, IEEE Journal of Quantum Electronics.

[2]  F. Wise,et al.  Route to the minimum pulse duration in normal-dispersion fiber lasers. , 2008, Optics letters.

[3]  Akira Shirakawa,et al.  Large-mode-area erbium-ytterbium-doped photonic-crystal fiber amplifier for high-energy femtosecond pulses at 1.55 microm. , 2005, Optics express.

[4]  F. Ömer Ilday,et al.  Soliton–similariton fibre laser , 2010 .

[5]  Jun Ye,et al.  Optical frequency comb with submillihertz linewidth and more than 10 W average power , 2008 .

[6]  G. Millot,et al.  Generation of dark solitons by interaction between similaritons in Raman fiber amplifiers , 2006 .

[7]  R. J. Kruhlak,et al.  Solitary pulse propagation in high gain optical fiber amplifiers with normal group velocity dispersion , 2002 .

[8]  B C Thomsen,et al.  Self-similar propagation and amplification of parabolic pulses in optical fibers. , 2000, Physical review letters.

[9]  Frank Wise,et al.  Self-similar erbium-doped fiber laser with large normal dispersion. , 2014, Optics letters.

[11]  J. Fujimoto,et al.  Structures for additive pulse mode locking , 1991 .

[12]  J. Harvey,et al.  Experimental realisation of a mode-locked parabolic Raman fiber oscillator , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[13]  Almantas Galvanauskas,et al.  High-energy similariton fiber laser using chirally coupled core fiber. , 2013, Optics letters.

[14]  F. Wise,et al.  Starting dynamics of dissipative-soliton fiber laser. , 2010, Optics letters.

[15]  S. Wabnitz,et al.  Pulse generation without gain-bandwidth limitation in a laser with self-similar evolution , 2012, Optics express.

[16]  Magnus Karlsson,et al.  Wave-breaking-free pulses in nonlinear-optical fibers , 1993 .

[17]  I. Zolotovskii,et al.  Multisoliton complexes in fiber lasers , 2014 .

[18]  F. Wise,et al.  Generation of 36-femtosecond pulses from a ytterbium fiber laser , 2003, Conference on Lasers and Electro-Optics, 2004. (CLEO)..

[19]  M. Nakazawa,et al.  Pulse compression by nonlinear pulse evolution with reduced optical wave breaking in erbium-doped fiber amplifiers. , 1996, Optics letters.

[20]  Clifford R. Pollock,et al.  Realizing self-similar pulses in solid-state laser systems , 2012 .

[21]  Almantas Galvanauskas,et al.  Ultrafast lasers : technology and applications , 2002 .

[22]  A. Ruehl,et al.  All-fiber similariton laser at 1 mum without dispersion compensation. , 2007, Optics express.

[23]  F. Wise,et al.  Self-similar evolution of parabolic pulses in a laser. , 2004, Physical review letters.

[24]  S. Wabnitz,et al.  Strong spectral filtering for a mode-locked similariton fiber laser. , 2010, Optics letters.

[25]  Bowen Liu,et al.  Enhanced spectral breathing for sub-25 fs pulse generation in a Yb-fiber laser. , 2013, Optics letters.

[26]  Frank W. Wise,et al.  Amplifier similaritons in a dispersion-mapped fiber laser [Invited] , 2011, Optics express.

[27]  Frank W. Wise,et al.  High‐energy femtosecond fiber lasers based on pulse propagation at normal dispersion , 2008 .

[28]  R. Stolen,et al.  Optical wave breaking of pulses in nonlinear optical fibers. , 1985, Optics letters.

[29]  M M Fejer,et al.  Frequency doubling of femtosecond erbium-fiber soliton lasers in periodically poled lithium niobate. , 1997, Optics letters.

[30]  D. J. Richardson,et al.  J Pulses From a Single Transverse Mode , Large Mode-Area EDFA , 1998 .

[31]  D. Richardson,et al.  Power scaling in passively mode-locked large-mode area fiber lasers , 1998, IEEE Photonics Technology Letters.

[32]  J W Nicholson,et al.  Full-field characterization of femtosecond pulses by spectrum and cross-correlation measurements. , 1999, Optics letters.

[33]  F. Wise,et al.  Possibility of Self-similar Pulse Evolution in a Ti:sapphire Laser References and Links , 2022 .

[34]  K. Williams,et al.  158-microJ pulses from a single-transverse-mode, large-mode-area erbium-doped fiber amplifier. , 1997, Optics letters.

[35]  M Hanna,et al.  High peak-power stretcher-free femtosecond fiber amplifier using passive spatio-temporal coherent combining. , 2012, Optics express.

[36]  Dai Yoshitomi,et al.  Generation of 28-fs pulses from a mode-locked ytterbium fiber oscillator. , 2008, Optics express.

[37]  F. Wise,et al.  Generation of ten-cycle pulses from an ytterbium fiber laser with cubic phase compensation. , 2006, Optics letters.

[38]  Cristian Antonelli,et al.  Intracavity pulse dynamics and stability for passively mode-locked lasers. , 2007, Optics express.

[39]  J. Gordon,et al.  Negative dispersion using pairs of prisms. , 1984, Optics letters.

[40]  Masataka Nakazawa,et al.  Parabolic pulse generation by use of a dispersion-decreasing fiber with normal group-velocity dispersion. , 2004, Optics letters.

[41]  Andy Chong,et al.  Self-similar pulse evolution in an all-normal-dispersion laser. , 2010, Physical review. A, Atomic, molecular, and optical physics.

[42]  P. Grelu,et al.  Dissipative solitons for mode-locked lasers , 2012, Nature Photonics.

[43]  F. W. Wise,et al.  Pulse Shaping and Evolution in Normal-Dispersion Mode-Locked Fiber Lasers , 2012, IEEE Journal of Selected Topics in Quantum Electronics.

[44]  U. Gösele,et al.  Large-area wafer bonding of GaAs using hydrogen and ultrahigh vacuum atmospheres , 2000 .

[45]  L. Nelson,et al.  Efficient frequency doubling of a femtosecond fiber laser. , 1996, Optics letters.

[46]  J. Broeng,et al.  Large-Mode-Area Erbium-Ytterbium-doped Photonic-Crystal Fiber Amplifier yielding 54-kW Femtosecond Pulses without Chirped-Pulse Amplification , 2005, 2005 Pacific Rim Conference on Lasers & Electro-Optics.

[47]  David J. Richardson,et al.  320 fs soliton generation with passively mode-locked erbium fibre laser , 1991 .

[48]  Hung-Wen Chen,et al.  Erbium Fiber Oscillator With an Intracavity Pulse Shaper for High-Energy Low-Pedestal Wavelength-Tunable Femtosecond Pulse Generation , 2014, Journal of Lightwave Technology.

[49]  F. Wise,et al.  Fundamental Limits to Mode-Locked Lasers: Toward Terawatt Peak Powers , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[50]  Clifford R. Pollock,et al.  Average cavity description of self-similar lasers , 2014 .

[51]  G. Millot,et al.  Collisions between similaritons in optical fiber amplifiers. , 2005, Optics express.

[52]  D. Harter,et al.  Generation and interaction of parabolic pulses in high gain fiber amplifiers and oscillators , 2001, OFC 2001. Optical Fiber Communication Conference and Exhibit. Technical Digest Postconference Edition (IEEE Cat. 01CH37171).

[53]  Ching-Yuan Chien,et al.  Generation of sub-50 fs pulses from a high-power Yb-doped fiber amplifier. , 2009, Optics letters.

[54]  Almantas Galvanauskas,et al.  Dependence of parabolic pulse amplification on stimulated Raman scattering and gain bandwidth. , 2004, Optics letters.

[55]  H. Haus,et al.  Self-starting condition for additive-pulse mode-locked lasers. , 1990, Optics letters.

[56]  C. Jirauschek,et al.  Semianalytic theory of self-similar optical propagation and mode locking using a shape-adaptive model pulse , 2011, 1106.2740.

[57]  Sergei K. Turitsyn,et al.  Dispersion-managed solitons in fibre systems and lasers , 2012 .

[58]  J. Limpert,et al.  Generation of parabolic bound pulses from a Yb-fiber laser. , 2006, Optics express.

[59]  Marcos Dantus,et al.  Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation. , 2004, Optics letters.

[60]  R. Stolen,et al.  The soliton laser. , 1984, Optics letters.

[61]  Carsten Fallnich,et al.  0.7W all-fiber Erbium oscillator generating 64 fs wave breaking-free pulses. , 2005, Optics express.

[62]  Frank W. Wise,et al.  Dissipative solitons in normal-dispersion fiber lasers , 2008 .

[63]  Frank W. Wise,et al.  Multimodal microscopy with sub-30 fs Yb fiber laser oscillator , 2012, Biomedical optics express.

[64]  F. Wise,et al.  Generation of 8 nJ pulses from a normal-dispersion thulium fiber laser. , 2015, Optics letters.

[65]  S. Turitsyn,et al.  Intermediate asymptotics in nonlinear optical systems , 2012 .

[66]  Guy Millot,et al.  Parabolic pulse generation with active or passive dispersion decreasing optical fibers. , 2007, Optics express.

[67]  V. Kalashnikov,et al.  Dissipative Raman solitons. , 2014, Optics express.

[68]  Ingmar Hartl,et al.  80 W, 120 fs Yb-fiber frequency comb. , 2010, Optics letters.

[69]  Guy Millot,et al.  Asymptotic characteristics of parabolic similariton pulses in optical fiber amplifiers. , 2004, Optics letters.

[70]  Periklis Petropoulos,et al.  Pulse shaping in mode-locked fiber lasers by in-cavity spectral filter. , 2014, Optics letters.

[71]  G. Millot,et al.  Self-similarity in ultrafast nonlinear optics , 2007 .

[72]  On the profile of pulses generated by fiber lasers:the highly-chirped positive dispersion regime (similariton). , 2006, Optics express.

[73]  Almantas Galvanauskas,et al.  Effectively Single-Mode Chirally-Coupled Core Fiber , 2007 .

[74]  Almantas Galvanauskas,et al.  Ultrafast pulse sources based on multi-mode optical fibers , 2000 .

[75]  I. Duling All-fiber ring soliton laser mode locked with a nonlinear mirror. , 1991, Optics letters.

[76]  Sergei K. Turitsyn,et al.  Amplifier similariton fibre laser with nonlinear spectral compression , 2012 .

[77]  Hermann A. Haus,et al.  The Parametric Soliton Laser with Low Pedestal , 1989 .

[78]  J. Harvey,et al.  Self-similar propagation of high-power parabolic pulses in optical fiber amplifiers. , 2000, Optics letters.

[79]  Jun Ye,et al.  Cavity-enhanced similariton Yb-fiber laser frequency comb: 3 x 10(14) W/cm2 peak intensity at 136 MHz. , 2007, Optics letters.

[80]  Frank W. Wise,et al.  Generation of 42-fs and 10-nJ pulses from a fiber laser with self-similar evolution in the gain segment , 2011, Optics express.