An impact ordering approach for indexing fuzzy sets

We propose an approach for indexing fuzzy data based on inverted files that speeds up retrieval considerably by stopping the traversal of postings lists early. This is possible because the entries in the postings lists are organized in a way that guarantees that there are no matching items beyond a certain point in a list. Consequently, we can reduce the number of false positives significantly, leading to an increase in retrieval performance. We have implemented our approach and evaluated it experimentally, including a test on skewed and real-world data, comparing it to an approach that has previously been shown to be superior to other methods.

[1]  Sven Helmer,et al.  Evaluating different approaches for indexing fuzzy sets , 2003, Fuzzy Sets Syst..

[2]  Sven Helmer,et al.  A performance study of four index structures for set-valued attributes of low cardinality , 2003, The VLDB Journal.

[3]  Rita De Caluwe Fuzzy And Uncertain Object-Oriented Databases: Concepts And Models , 1997 .

[4]  Juan Miguel Medina,et al.  A B+-tree based indexing technique for fuzzy numerical data , 2008, Fuzzy Sets Syst..

[5]  Elisa Bertino,et al.  Indexing Techniques for Advanced Database Systems , 1997, The Springer International Series on Advances in Database Systems.

[6]  Guy De Tré,et al.  Preface to the special issue on advances in fuzzy database technology: Introduction , 2007 .

[7]  Juan Miguel Medina,et al.  Towards a Fuzzy Object-Relational Database Model , 2008, Handbook of Research on Fuzzy Information Processing in Databases.

[8]  José M. Soto-Hidalgo,et al.  Retrieving images in fuzzy object-relational databases using dominant color descriptors , 2007, Fuzzy Sets Syst..

[9]  Guy De Tré,et al.  The application of fuzzy logic and soft computing in information management , 2009, Fuzzy Sets Syst..

[10]  Peter J. Haas,et al.  Special issue on uncertain and probabilistic databases , 2009, The VLDB Journal.

[11]  Andrew Trotman,et al.  Compressing Inverted Files , 2004, Information Retrieval.

[12]  Hiroyuki Kitagawa,et al.  Evaluation of signature files as set access facilities in OODBs , 1993, SIGMOD '93.

[13]  Henri Prade,et al.  Generalizing Database Relational Algebra for the Treatment of Incomplete/Uncertain Information and Vague Queries , 1984, Inf. Sci..

[14]  Alberto Del Bimbo,et al.  Visual information retrieval , 1999 .

[15]  Adnan Yazici,et al.  Uncertainty Modeling in Object-Oriented Geographical Information Systems , 1992, DEXA.

[16]  B. Buckles,et al.  A fuzzy representation of data for relational databases , 1982 .

[17]  Hinrich Schütze,et al.  Introduction to information retrieval , 2008 .

[18]  Juan Miguel Medina,et al.  Indexing Fuzzy numerical Data with a B+ Tree for Fast Retrieval Using Necessity-Measured Flexible conditions , 2009, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[19]  Ian H. Witten,et al.  Managing gigabytes , 1994 .

[20]  George J. Klir,et al.  Fuzzy sets, uncertainty and information , 1988 .

[21]  Uwe Deppisch,et al.  S-tree: a dynamic balanced signature index for office retrieval , 1986, SIGIR '86.

[22]  Jennifer Widom,et al.  The Lowell database research self-assessment , 2003, CACM.

[23]  José Galindo,et al.  Fuzzy Databases: Modeling, Design, and Implementation , 2006 .

[24]  Didier Dubois,et al.  Possibility Theory - An Approach to Computerized Processing of Uncertainty , 1988 .

[25]  Gerhard Weikum,et al.  Database and information-retrieval methods for knowledge discovery , 2009, CACM.

[26]  Patrick Bosc,et al.  Indexing principles for a fuzzy data base , 1989, Inf. Syst..

[27]  Guy De Tré,et al.  Preface to the special issue on advances in fuzzy database technology , 2007, Int. J. Intell. Syst..

[28]  Frederick E. Petry,et al.  Principles and Applications , 1997 .