Coupled polarization and nanodomain evolution underpins large electromechanical responses in relaxors

[1]  L. Martin,et al.  Frequency-dependent suppression of field-induced polarization rotation in relaxor ferroelectric thin films , 2021, Matter.

[2]  R. Vasudevan,et al.  Anisotropic epitaxial stabilization of a low-symmetry ferroelectric with enhanced electromechanical response , 2021, Nature Materials.

[3]  Jacob L. Jones,et al.  Connecting the Multiscale Structure with Macroscopic Response of Relaxor Ferroelectrics , 2020, Advanced Functional Materials.

[4]  Shujun Zhang,et al.  Atomic-resolution electron microscopy of nanoscale local structure in lead-based relaxor ferroelectrics , 2020, Nature Materials.

[5]  V. Garcia,et al.  Inverse transition of labyrinthine domain patterns in ferroelectric thin films , 2020, Nature.

[6]  X. Ren,et al.  Morphotropic Relaxor Boundary in a Relaxor System Showing Enhancement of Electrostrain and Dielectric Permittivity. , 2019, Physical review letters.

[7]  Bin Xu,et al.  Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals , 2019, Science.

[8]  A. Rappe,et al.  Epitaxial Strain Control of Relaxor Ferroelectric Phase Evolution , 2019, Advanced materials.

[9]  O. Delaire,et al.  Ultrafast disordering of vanadium dimers in photoexcited VO2 , 2018, Science.

[10]  Fei Li,et al.  Local Structural Heterogeneity and Electromechanical Responses of Ferroelectrics: Learning from Relaxor Ferroelectrics , 2018, Advanced Functional Materials.

[11]  P. Gehring,et al.  The relation of local order to material properties in relaxor ferroelectrics , 2018, Nature Materials.

[12]  Ilya Grinberg,et al.  Slush-like polar structures in single-crystal relaxors , 2017, Nature.

[13]  Zhenxiang Cheng,et al.  The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals , 2016, Nature Communications.

[14]  R. Sahul,et al.  Giant electromechanical coupling of relaxor ferroelectrics controlled by polar nanoregion vibrations , 2016, Science Advances.

[15]  F. Bai,et al.  X-ray and neutron diffraction investigations of the structural phase transformation sequence under electric field in 0 . 7 Pb ( Mg 1 ∕ 3 Nb 2 ∕ 3 )-0 . 3 PbTiO 3 crystal , 2015 .

[16]  John D. Budai,et al.  Phonon localization drives polar nanoregions in a relaxor ferroelectric , 2014, Nature Communications.

[17]  Xiahan Sang,et al.  Revolving scanning transmission electron microscopy: correcting sample drift distortion without prior knowledge. , 2014, Ultramicroscopy.

[18]  L. Bellaiche,et al.  Properties of epitaxial films made of relaxor ferroelectrics. , 2013, Physical review letters.

[19]  D. Goossens Diffuse Scattering from Lead-Containing Ferroelectric Perovskite Oxides , 2013 .

[20]  D. Chernyshov,et al.  Diffuse scattering in relaxor ferroelectrics: true three-dimensional mapping, experimental artefacts and modelling. , 2012, Acta crystallographica. Section A, Foundations of crystallography.

[21]  Y. Ikuhara,et al.  Real-time direct observations of polarization reversal in a piezoelectric crystal: Pb(Mg1/3Nb2/3)O3-PbTiO3 studied via in situ electrical biasing transmission electron microscopy. , 2011, Physical review letters.

[22]  Susanne Stemmer,et al.  Position averaged convergent beam electron diffraction: theory and applications. , 2010, Ultramicroscopy.

[23]  P. Gehring,et al.  Response of polar nanoregions in 68%Pb(Mg1/3Nb2/3)O3-32%PbTiO3 to a [001] electric field , 2008, 0806.0288.

[24]  Guangyong Xu,et al.  Phase instability induced by polar nanoregions in a relaxor ferroelectric system. , 2008, Nature materials.

[25]  M. Wołcyrz,et al.  Interpretation of the diffuse scattering in Pb-based relaxor ferroelectrics in terms of three-dimensional nanodomains of the (110)-directed relative interdomain atomic shifts , 2007 .

[26]  N. Setter,et al.  Uniaxial-stress induced phase transitions in [001]C-poled 0.955Pb(Zn1∕3Nb2∕3)O3–0.045PbTiO3 , 2007, cond-mat/0703615.

[27]  Matthew J. Davis Picturing the elephant: Giant piezoelectric activity and the monoclinic phases of relaxor-ferroelectric single crystals , 2007 .

[28]  G. Shirane,et al.  Composition dependence of the diffuse scattering in the relaxor ferroelectric compound (1 -x )Pb (Mg1/3Nb2/3 )O3-xPbTiO3 (0≤x≤ 0.40) , 2006 .

[29]  J. Petzelt,et al.  The giant electromechanical response in ferroelectric relaxors as a critical phenomenon , 2006, Nature.

[30]  Dragan Damjanovic,et al.  Electric-field-, temperature-, and stress-induced phase transitions in relaxor ferroelectric single crystals , 2006 .

[31]  T. Welberry Diffuse Scattering and Monte Carlo Studies of Relaxor Ferroelectrics , 2005 .

[32]  F. Bai,et al.  X-ray and neutron diffraction investigations of the structural phase transformation sequence under electric field in 0.7Pb(Mg1∕3Nb2∕3)-0.3PbTiO3 crystal , 2004, cond-mat/0402296.

[33]  D. Viehland,et al.  Adaptive ferroelectric states in systems with low domain wall energy: Tetragonal microdomains , 2003 .

[34]  E. Kisi,et al.  The giant piezoelectric effect: electric field induced monoclinic phase or piezoelectric distortion of the rhombohedral parent? , 2003 .

[35]  G. Shirane,et al.  Polarization rotation via a monoclinic phase in the piezoelectric 92% PbZn(1/3)Nb(2/3)O3-8% PbTiO3. , 2000, Physical review letters.

[36]  Ronald E. Cohen,et al.  Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics , 2000, Nature.

[37]  T. Shrout,et al.  Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals , 1997 .