Smoothing Technique of Nonsmooth Newton Methods for Control-State Constrained Optimal Control Problems

This paper is concerned with the numerical solution of optimal control problems subject to mixed control-state constraints with differential-algebraic equations. The necessary conditions arising from a local minimum principle are transformed into an equivalent nonsmooth equation in appropriate Banach spaces. We then develop a parametric smoothing Newton method for solving this nonsmooth equation. The global and local convergence is proposed under suitable settings. Numerical examples are presented to demonstrate the efficiency of our global smoothing technique.

[1]  Michael Ulbrich,et al.  Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces , 2011, MOS-SIAM Series on Optimization.

[2]  Matthias Gerdts,et al.  Global Convergence of a Nonsmooth Newton Method for Control-State Constrained Optimal Control Problems , 2008, SIAM J. Optim..

[3]  V. Zeidan The Riccati Equation for Optimal Control Problems with Mixed State-Control Constraints: Necessity and Sufficiency , 1994 .

[4]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[5]  Defeng Sun,et al.  A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequalities , 2000, Math. Program..

[6]  Kazufumi Ito,et al.  The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..

[7]  B. Kummer Newton’s Method Based on Generalized Derivatives for Nonsmooth Functions: Convergence Analysis , 1992 .

[8]  Francisco Facchinei,et al.  A nonsmooth inexact Newton method for the solution of large-scale nonlinear complementarity problems , 1997, Math. Program..

[9]  Bintong Chen,et al.  A Non-Interior-Point Continuation Method for Linear Complementarity Problems , 1993, SIAM J. Matrix Anal. Appl..

[10]  M. Gerdts,et al.  Numerical solution of control-state constrained optimal control problems with an inexact smoothing Newton method , 2011 .

[11]  K. Malanowski On normality of lagrange multipliers for state constrained optimal control problems , 2001, 2001 European Control Conference (ECC).

[12]  Lucien W. Neustadt,et al.  Optimization: A Theory of Necessary Conditions , 1976 .

[13]  H. Maurer,et al.  Sensitivity Analysis and Real-Time Control of Parametric Optimal Control Problems Using Boundary Value Methods , 2001 .

[14]  Liqun Qi,et al.  A nonsmooth version of Newton's method , 1993, Math. Program..

[15]  Ivan P. Gavrilyuk,et al.  Lagrange multiplier approach to variational problems and applications , 2010, Math. Comput..

[16]  Matthias Gerdts,et al.  A globally convergent semi-smooth Newton method for control-state constrained DAE optimal control problems , 2011, Comput. Optim. Appl..

[17]  S. Fomin,et al.  Elements of the Theory of Functions and Functional Analysis , 1961 .

[18]  A. Fischer A special newton-type optimization method , 1992 .

[19]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[20]  M. Ulbrich Nonsmooth Newton-like Methods for Variational Inequalities and Constrained Optimization Problems in , 2001 .

[21]  J. Warga Optimal Control of Ordinary Differential Equations , 1972 .

[22]  H. Maurer,et al.  Sensitivity analysis for parametric control problems with control-state constraints , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[23]  M. Gerdts Direct Shooting Method for the Numerical Solution of Higher-Index DAE Optimal Control Problems , 2003 .

[24]  Francisco Facchinei,et al.  A semismooth equation approach to the solution of nonlinear complementarity problems , 1996, Math. Program..

[25]  Andreas Fischer,et al.  Solution of monotone complementarity problems with locally Lipschitzian functions , 1997, Math. Program..

[26]  Christian Kanzow,et al.  Some Noninterior Continuation Methods for Linear Complementarity Problems , 1996, SIAM J. Matrix Anal. Appl..

[27]  Jong-Shi Pang,et al.  A B-differentiable equation-based, globally and locally quadratically convergent algorithm for nonlinear programs, complementarity and variational inequality problems , 1991, Math. Program..

[28]  J. M. Martínez,et al.  Inexact Newton methods for solving nonsmooth equations , 1995 .

[29]  Suresh P. Sethi,et al.  A Survey of the Maximum Principles for Optimal Control Problems with State Constraints , 1995, SIAM Rev..

[30]  C. W. Gear,et al.  Automatic integration of Euler-Lagrange equations with constraints , 1985 .

[31]  Kazimierz Malanowski,et al.  The Lagrange-Newton method for nonlinear optimal control problems , 1993, Comput. Optim. Appl..

[32]  Xiaojun Chen,et al.  Smoothing Methods and Semismooth Methods for Nondifferentiable Operator Equations , 2000, SIAM J. Numer. Anal..

[33]  Martin Grötschel,et al.  Online optimization of large scale systems , 2001 .

[34]  Christian Kanzow,et al.  Jacobian Smoothing Methods for Nonlinear Complementarity Problems , 1999, SIAM J. Optim..

[35]  H. Maurer,et al.  Second-order sufficient conditions for control problems with mixed control-state constraints , 1995 .

[36]  Michael Ulbrich,et al.  Semismooth Newton Methods for Operator Equations in Function Spaces , 2002, SIAM J. Optim..

[37]  Defeng Sun,et al.  Smoothing Functions and Smoothing Newton Method for Complementarity and Variational Inequality Problems , 2002 .

[38]  Liqun Qi,et al.  Convergence Analysis of Some Algorithms for Solving Nonsmooth Equations , 1993, Math. Oper. Res..

[39]  Xiaojun Chen,et al.  Global and superlinear convergence of the smoothing Newton method and its application to general box constrained variational inequalities , 1998, Math. Comput..

[40]  A. Ioffe,et al.  Theory of extremal problems , 1979 .