Optimizing the performance of catalytic traps for hydrocarbon abatement during the cold-start of a gasoline engine.

[1]  R. Gorte,et al.  A temperature-programmed desorption study of olefin oligomerization in H-ZSM-5 , 1989 .

[2]  C. Lund,et al.  Oligomerization of ethene and propene over composite zeolite catalysts , 1990 .

[3]  K. Otto,et al.  Chemisorption of alkenes on copper-exchanged ZSM-5 zeolite , 1994 .

[4]  C. Henriques,et al.  Deactivation of CuMFI catalysts under NO selective catalytic reduction by propene: influence of zeolite form, Si/Al ratio and copper content , 1997 .

[5]  V. Rogov,et al.  Catalytic and adsorptive properties of a Cu-ZSM-5 catalyst synthesized by solid-phase method , 1997 .

[6]  Copper Sites in Copper-Exchanged ZSM-5 for CO Activation and Methanol Synthesis: XPS and FTIR Studies. , 1997, Inorganic chemistry.

[7]  Comparative Study of the NO-Decomposition over Cu-loaded ZSM-5 Zeolites Prepared via Different Routes , 1997 .

[8]  M. Edwards,et al.  Role of Temperature and pH in Cu(OH)2 Solubility , 1999 .

[9]  H. C. Krijnsen,et al.  Deactivation of zeolite catalysts used for NOx removal , 2000 .

[10]  ESR and TPD Study of the Interaction of Nitromethane and Ammonia with HZSM-5 and CuZSM-5 Zeolites , 2001 .

[11]  L. Martins,et al.  Identification of Extra-Framework Species on Fe/ZSM-5 and Cu/ZSM-5 Catalysts Typical Microporous Molecular Sieves with Zeolitic Structure , 2002 .

[12]  R. Keiski,et al.  Catalyst preparation through ion-exchange of zeolite Cu-, Ni-, Pd-, CuNi- and CuPd-ZSM-5 , 2002 .

[13]  NorAishahSaidinaAmin,et al.  Characterization and Activity of Cr, Cu and Ga Modified ZSM—5 for Direct Conversion of Methane to Liquid Hydrocarbons , 2003 .

[14]  I. Nam,et al.  A fast and quantitative assay for developing zeolite-type hydrocarbon trap catalyst , 2007 .

[15]  S. Kaliaguine,et al.  Synthesis, structural and acidity characterizations of the large-pore zeolite SSZ-42 for controlling cold-start emissions , 2009 .

[16]  I. Nam,et al.  Promising zeolite-type hydrocarbon trap catalyst by a knowledge-based combinatorial approach , 2009 .

[17]  Jean-Yves Favez,et al.  Cold start extra emissions as a function of engine stop time: Evolution over the last 10 years , 2009 .

[18]  A. Srinivasan,et al.  Oil removal from water by fungal biomass: a factorial design analysis. , 2010, Journal of hazardous materials.

[19]  S. Bauer,et al.  Attribution of climate forcing to economic sectors , 2010, Proceedings of the National Academy of Sciences.

[20]  J. Lelieveld,et al.  Transport impacts on atmosphere and climate: Land transport , 2010 .

[21]  T. García,et al.  Screening of different zeolites and silicoaluminophosphates for the retention of propene under cold start conditions , 2010 .

[22]  M. Eić,et al.  One-dimensional molecular sieves for hydrocarbon cold-start emission control: Influence of water and CO2 , 2010 .

[23]  Recent Solutions for the Abatement of Hydrocarbon Emissions During the Cold Start of Light Vehicles , 2011 .

[24]  A. Boix,et al.  Adsorption and diffusion of toluene on Na and Cs mordenites for hydrocarbon traps , 2011 .

[25]  B. Puértolas,et al.  Molecular simulation design of a multisite solid for the abatement of cold start emissions. , 2012, Chemical communications.

[26]  S. Oh,et al.  Kinetic modeling of hydrocarbon adsorbers for gasoline and ethanol fuels , 2012 .

[27]  The use Na, Li, K cations for modification of ZSM-5 zewolite to control hydrocarbon cold-start emission , 2012 .

[28]  B. Puértolas,et al.  CuH-ZSM-5 as hydrocarbon trap under cold start conditions. , 2013, Environmental science & technology.

[29]  Giorgio Martini,et al.  Low-temperature cold-start gaseous emissions of late technology passenger cars , 2013 .

[30]  B. Puértolas,et al.  Bifunctional Cu/H-ZSM-5 zeolite with hierarchical porosity for hydrocarbon abatement under cold-start conditions , 2014 .