Cocyclic Hadamard matrices over Latin rectangles
暂无分享,去创建一个
Víctor Álvarez | Félix Gudiel | Raúl M. Falcón | R. M. Falcón | M. D. Frau | Belén Güemes | V. Álvarez | M. Frau | F. Gudiel | Belén Güemes
[1] M. Hall. An existence theorem for latin squares , 1945 .
[2] D. Flannery,et al. Cocyclic Hadamard Matrices and Hadamard Groups Are Equivalent , 1997 .
[3] V. Álvarez,et al. On D4t ‐Cocyclic Hadamard Matrices , 2016 .
[4] K. Horadam. Hadamard Matrices and Their Applications , 2006 .
[5] K. J. Horadam,et al. Generation of Cocyclic Hadamard Matrices , 1995 .
[6] K. J. Horadam,et al. Cocyclic Development of Designs , 1993 .
[7] B. McKay,et al. Small latin squares, quasigroups, and loops , 2007 .
[8] J. J. Seidel,et al. SYMMETRIC HADAMARD MATRICES OF ORDER 36 , 1970 .
[9] A. Krapez,et al. Belousov equations on quasigroups , 1987 .
[10] Bernhard Schmidt,et al. The anti-field-descent method , 2016, J. Comb. Theory, Ser. A.
[11] Padraig Ó Catháin,et al. The cocyclic Hadamard matrices of order less than 40 , 2011, Des. Codes Cryptogr..
[12] J. Sylvester. LX. Thoughts on inverse orthogonal matrices, simultaneous signsuccessions, and tessellated pavements in two or more colours, with applications to Newton's rule, ornamental tile-work, and the theory of numbers , 1867 .
[13] R. Turyn. Character sums and difference sets. , 1965 .
[14] Patric R. J. Östergård,et al. The number of Latin squares of order 11 , 2009, Math. Comput..
[15] Brendan D. McKay,et al. Isomorph-Free Exhaustive Generation , 1998, J. Algorithms.
[16] A. Krapez,et al. Quasigroups satisfying balanced but not Belousov equations are group isotopes , 1991 .
[17] Clement W. H. Lam,et al. On the number of 8×8 latin squares , 1990, J. Comb. Theory, Ser. A.
[18] J. J. Seidel,et al. Strongly Regular Graphs Derived from Combinatorial Designs , 1970, Canadian Journal of Mathematics.
[19] R. Moufang,et al. Zur Struktur von Alternativkörpern , 1935 .
[20] J. Dénes,et al. Latin squares and their applications , 1974 .
[21] Kathy J. Horadam,et al. A weak difference set construction for higher dimensional designs , 1993, Des. Codes Cryptogr..
[22] Michael J. Mossinghoff,et al. Wieferich pairs and Barker sequences, II , 2014 .