Linear Darboux polynomials for Lotka-Volterra systems, trees and superintegrable families

We present a method to construct superintegrable $n$-component Lotka-Volterra systems with $3n-2$ parameters. We apply the method to Lotka-Volterra systems with $n$ components for $1<n<6$, and present several $n$-dimensional superintegrable families. The Lotka-Volterra systems are in one-to-one correspondence with trees on $n$ vertices.

[1]  T. Bountis,et al.  Integrable and non-integrable Lotka-Volterra systems , 2021 .

[2]  Pantelis A. Damianou,et al.  DARBOUX POLYNOMIALS FOR LOTKA–VOLTERRA SYSTEMS IN THREE DIMENSIONS , 2008, Journal of Nonlinear Mathematical Physics.

[3]  P. Vanhaecke,et al.  Morphisms and automorphisms of skew-symmetric Lotka–Volterra systems , 2020, 2010.16180.

[4]  T. Bountis,et al.  Lotka–Volterra systems satisfying a strong Painlevé property , 2016 .

[5]  G. Quispel,et al.  Liouville integrability and superintegrability of a generalized Lotka–Volterra system and its Kahan discretization , 2016, 1601.05006.

[6]  L. Schwartz Analytical Theory Of Biological Populations , 2016 .

[7]  P. Vanhaecke,et al.  Integrable and superintegrable systems associated with multi-sums of products , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[8]  F. Musso,et al.  Integrable deformations of Lotka–Volterra systems , 2011, 1106.0805.

[9]  O. I. Bogoyavlenskij,et al.  Integrable Lotka-Volterra systems , 2008 .

[10]  Laurent Cair'o Darboux First Integral Conditions and Integrability of the 3D Lotka-Volterra System , 2000, nlin/0010059.

[11]  B. Hernández-Bermejo,et al.  Hamiltonian structure and Darboux theorem for families of generalized Lotka–Volterra systems , 1998, 1910.02723.

[12]  Pedro Duarte,et al.  Dynamics of the Attractor in the Lotka–Volterra Equations☆☆☆ , 1998 .

[13]  M. Feix,et al.  Connection between the existence of first integrals and the painlevé property in two-dimensional lotka-volterra and quadratic systems , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[14]  M. Plank Hamiltonian structures for the n‐dimensional Lotka–Volterra equations , 1995 .

[15]  Y. Itoh Integrals of a Lotka-Volterra System of Odd Number of Variables , 1987 .

[16]  Vito Volterra,et al.  Leçons sur la théorie mathématique de la lutte pour la vie , 1931 .