Linear Darboux polynomials for Lotka-Volterra systems, trees and superintegrable families
暂无分享,去创建一个
P. Kamp | D. McLaren | G. Quispel | B. Tapley
[1] T. Bountis,et al. Integrable and non-integrable Lotka-Volterra systems , 2021 .
[2] Pantelis A. Damianou,et al. DARBOUX POLYNOMIALS FOR LOTKA–VOLTERRA SYSTEMS IN THREE DIMENSIONS , 2008, Journal of Nonlinear Mathematical Physics.
[3] P. Vanhaecke,et al. Morphisms and automorphisms of skew-symmetric Lotka–Volterra systems , 2020, 2010.16180.
[4] T. Bountis,et al. Lotka–Volterra systems satisfying a strong Painlevé property , 2016 .
[5] G. Quispel,et al. Liouville integrability and superintegrability of a generalized Lotka–Volterra system and its Kahan discretization , 2016, 1601.05006.
[6] L. Schwartz. Analytical Theory Of Biological Populations , 2016 .
[7] P. Vanhaecke,et al. Integrable and superintegrable systems associated with multi-sums of products , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[8] F. Musso,et al. Integrable deformations of Lotka–Volterra systems , 2011, 1106.0805.
[9] O. I. Bogoyavlenskij,et al. Integrable Lotka-Volterra systems , 2008 .
[10] Laurent Cair'o. Darboux First Integral Conditions and Integrability of the 3D Lotka-Volterra System , 2000, nlin/0010059.
[11] B. Hernández-Bermejo,et al. Hamiltonian structure and Darboux theorem for families of generalized Lotka–Volterra systems , 1998, 1910.02723.
[12] Pedro Duarte,et al. Dynamics of the Attractor in the Lotka–Volterra Equations☆☆☆ , 1998 .
[13] M. Feix,et al. Connection between the existence of first integrals and the painlevé property in two-dimensional lotka-volterra and quadratic systems , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[14] M. Plank. Hamiltonian structures for the n‐dimensional Lotka–Volterra equations , 1995 .
[15] Y. Itoh. Integrals of a Lotka-Volterra System of Odd Number of Variables , 1987 .
[16] Vito Volterra,et al. Leçons sur la théorie mathématique de la lutte pour la vie , 1931 .