Measurement of the Positive Muon Anomalous Magnetic Moment to 0.20 ppm.

We present a new measurement of the positive muon magnetic anomaly, $a_\mu \equiv (g_\mu - 2)/2$, from the Fermilab Muon $g\!-\!2$ Experiment based on data collected in 2019 and 2020. We have analyzed more than four times the number of positrons from muon decay than in our previous result from 2018 data. The systematic error is reduced by more than a factor of two due to better running conditions, a more stable beam, and improved knowledge of the magnetic field weighted by the muon distribution, $\tilde{\omega}'^{}_p$, and of the anomalous precession frequency corrected for beam dynamics effects, $\omega_a$. From the ratio $\omega_a / \tilde{\omega}'^{}_p$, together with precisely determined external parameters, we determine $a_\mu = 116\,592\,057(25) \times 10^{-11}$ (0.21 ppm). Combining this result with our previous result from the 2018 data, we obtain $a_\mu\text{(FNAL)} = 116\,592\,055(24) \times 10^{-11}$ (0.20 ppm). The new experimental world average is $a_\mu (\text{Exp}) = 116\,592\,059(22)\times 10^{-11}$ (0.19 ppm), which represents a factor of two improvement in precision.

Bangalore | Cosmology | Seattle | Astrophysics | Batavia | Daresbury | Daejeon | Zhejiang | Hangzhou | Shenzhen | Ithaca | Manchester | University College London | Pisa | Campobasso | Charlottesville | Brookhaven National Laboratory | T. U. Dresden | Washington | Illinois. | Liverpool | Upton | Frascati | Lancaster | Dubna | Lemont | Urbana | Naples | Denver | Harrisonburg | London | Boston | Novosibirsk | Vietnam | Shanghai | F. Bedeschi | D. Cauz | M. Convery | M. Lancaster | R. Madrak | G. Pauletta | G. Piacentino | K. Pitts | L. Santi | U. I. Urbana-Champaign | U. Washington | U. Virginia | N. York | U. London | S. O. Physics | U. Michigan | A. Arbor | R. Korea | B. N. Laboratory | F. N. Laboratory | D. Rubin | K. Makino | Russia. | A. Anisenkov | R. Chislett | M. Eads | B. Casey | A. Lyon | B. Quinn | L. Welty-Rieger | N. Pohlman | E. Ramberg | V. Duginov | T. Teubner | H. Friedsam | M. Incagli | W. Morse | A. Lusiani | Infn | Romé | U. Kentucky | S. Lee | M. Berz | United Kingdom. | Institute for Computational Science | M. University | E. Lansing. | J. Mainz | D. Hampai | S. Dabagov | L. Cotrozzi | Trieste | J. I. O. N. Research | A. Fioretti | U. Manchester | F. Gray | P. Kammel | B. Kiburg | Italy | Dresden. | C. University | M. Syphers | I. Gaines | H. Nguyen | R. Fatémi | U. Napoli | U. Liverpool | J. Kaspar | A. Schreckenberger | L. Goodenough | Y. Oksuzian | G. Sciascio | M. Iacovacci | T. Halewood-leagas | M. Cheng | D. Stratakis | E. Barzi | B. Roberts | A. Driutti | A. Lucà | J. Crnkovic | S. Superiore | India | A. Weisskopf | U. Udine | I. Udine | University of Rijeka | Croatia. | U. Pisa | U. Massachusetts | S. Chappa | Blacksburg | J. Miller | C. Gabbanini | M. Karuza | G. Cantatore | T. Science | J. Grange | T. Walton | H. Swanson | A. N. Laboratory | Amherst | Laboratori Nazionali di Frascati | S. University | Colorado. | K. I. O. Science | Wellesley | Iṡtanbul | B. Drendel | J. Morgan | Mississippi. | V. Krylov | R. Carey | D. Kawall | Budker Institute of Nuclear Physics | Udine | R. Pilato | G. Venanzoni | P. Bloom | J. LaBounty | University | Oak Ridge National Laboratory | S. Falco | Sezione di Trieste | S. Mastroianni | Universita' di Roma Tor Vergata | Mainz | M. Bressler | V. Tishchenko | Z. Hodge | D. Hertzog | P. Debevec | C. Polly | Novosibirsk State Technical University | W. Turner | S. L. F. P. Physics | V. Baranov | N. Khomutov | D. Shemyakin | M. Kargiantoulakis | L. Institute | J. Mott | Y. Semertzidis | U. Trieste | S. Napoli | Sez. Roma Tor Vergata | James Madison University | Germany | A. Keshavarzi | S. Corrodi | K. Labe | Massachusetts | T. Chupp | B. Yu | D. Stockinger | B. Plaster | T. Gorringe | C. Ferrari | A. Gioiosa | A. Fienberg | A. Chapelain | D. Sweigart | K. Giovanetti | W. Gohn | G. Lukicov | H. Binney | S. Ganguly | J. Hempstead | C. Schlesier | M. Sorbara | E. Bottalico | P. Girotti | S. Miozzi | Universita di UdineI.N.F.N. Trieste | Northern Illinois University | L. University | Y. Zeng | R. Reimann | M. Fertl | I. O. Physics | A. García | D. Flay | N. Kuchinskiy | C. Chen | Key Laboratory for the Physics | O. Kim | N. Tran | M. Bhattacharya | DeKalb | Rijeka | Y. Wu | U. Vergata | D. Tarazona | U. Mississippi | S. Pisa | R. Hong | K. Badgley | S. Ramachandran | C. Claessens | Education | N. Froemming | B. Dinh | S. Park | China | Usa | Astronomy | M. Galati | A. Edmonds | Quy Nhơn | R. University | T. Albahri | S. Baeßler | I. Bailey | E. Barlas-Yucel | T. Barrett | J. Bono | S. Charity | Z. Chu | M. Farooq | S. Haciomeroglu | F. Han | A. Hibbert | K. W. Hong | L. Kelton | D. Kessler | K. Khaw | Z. Khechadoorian | M. Kiburg | N. Kinnaird | E. Kraegeloh | D. Li | I. Logashenko | B. MacCoy | R. Osofsky | J. Price | C. Stoughton | G. Sweetmore | A. Tewsley-Booth | E. Valetov | D. Vasilkova | Lexington | Wellesley College | Virgínia | Tsung-Dao Lee Institute | D. Povcani'c | B. Li | Technology | P. Winter | M. Yucel | I. University | Kentucky. | Z. Omarov | D. Allspach | L. Li | Y. Hu | Institut fur Kern- und Teilchenphysik | J. Esquivel | L. K. Gibbons | S. B. Foster | Italy. | S. Grant | Zhejiang Lab | Boston University | J. George | R. Chakraborty | Shenzhen University | T. Hu | N. MEPhI | J. Stapleton | A. L. Campos | Guangdong | Department of Applied Physics | Z. Lu | Al-Azhar University | Virginia Tech | A. Anisenkov | T. Bowcock | L. Bailey | D. Aguillard | S. Braun | G. Hesketh | E. Hess | B. Mitra | A. Nath | J. Ng | M. H. Qureshi | D. Still | V. P. Volnykh | C. Collaboration | Center for Axion | Precision Physics Institute for Basic Science | Cluster of Excellence Prisma | Michigan | North Central College | Naperville | Universita del Molise | I. Ricerche | urki | Research Center for Graph Computing | A. Luca | Institut fur Teilchenphysik | R. Korea. | University | N. S. University | M. Fertl | New York. | U. T. Vergata | H. Nguyen | Istinye University | S. University | Institute for Interdisciplinary Research in Science | T. Z. F. O. Science | M. D. Galati | Institut fur Teilchenphysik | U. O. Massachusetts | R. Fatemi | A. University

[1]  G. Gabrielse,et al.  Measurement of the Electron Magnetic Moment. , 2022, Physical review letters.

[2]  A. Tewsley-Booth The Muon g-2 Experiment at Fermilab , 2022, 2205.06336.

[3]  M. Lancaster,et al.  The straw tracking detector for the Fermilab Muon g-2 Experiment , 2021, Journal of Instrumentation.

[4]  P. Winter,et al.  High-accuracy absolute magnetometry with application to the Fermilab Muon g-2 experiment , 2021, Journal of Instrumentation.

[5]  D. Cauz,et al.  The fast non-ferric kicker system for the Muon $g-2$ Experiment at Fermilab , 2021, 2104.07805.

[6]  F. Bedeschi,et al.  Beam dynamics corrections to the Run-1 measurement of the muon anomalous magnetic moment at Fermilab , 2021, Physical Review Accelerators and Beams.

[7]  S. C. Kim,et al.  Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm. , 2021, Physical review letters.

[8]  F. Bedeschi,et al.  Measurement of the anomalous precession frequency of the muon in the Fermilab Muon g−2 Experiment , 2021, Physical Review D.

[9]  F. Bedeschi,et al.  Magnetic-field measurement and analysis for the Muon g−2 Experiment at Fermilab , 2021, Physical Review A.

[10]  B. Kiburg,et al.  Systematic and statistical uncertainties of the hilbert-transform based high-precision FID frequency extraction method. , 2021, Journal of magnetic resonance.

[11]  C. DeTar,et al.  The anomalous magnetic moment of the muon in the Standard Model , 2020, Physics Reports.

[12]  P. Winter,et al.  Design and performance of an in-vacuum, magnetic field mapping system for the Muon g-2 experiment , 2020, Journal of Instrumentation.

[13]  C. Lehner,et al.  Consistency of hadronic vacuum polarization between lattice QCD and the R ratio , 2020, Physical Review D.

[14]  T. Lippert,et al.  Leading hadronic contribution to the muon magnetic moment from lattice QCD , 2020, Nature.

[15]  G. Colangelo,et al.  Longitudinal short-distance constraints for the hadronic light-by-light contribution to (g − 2)μ with large-Nc Regge models , 2019, Journal of High Energy Physics.

[16]  S. Simula,et al.  Lepton anomalous magnetic moments in Lattice QCD+QED , 2019, 1910.03874.

[17]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[18]  J. Bijnens,et al.  Short-distance constraints for the HLbL contribution to the muon anomalous magnetic moment , 2019, Physics Letters B.

[19]  M. Hoferichter,et al.  Three-pion contribution to hadronic vacuum polarization , 2019, Journal of High Energy Physics.

[20]  C. Jung,et al.  Light quark vacuum polarization at the physical point and contribution to the muon g−2 , 2019, Physical Review D.

[21]  G. Pauletta,et al.  Performance of the Muon g−2 calorimeter and readout systems measured with test beam data , 2019, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[22]  H. Wittig,et al.  Leading hadronic contribution to (g−2)μ from lattice QCD with Nf=2+1 flavors of O(a) improved Wilson quarks , 2019, Physical Review D.

[23]  A. Nyffeler,et al.  Lattice calculation of the pion transition form factor with Nf=2+1 Wilson quarks , 2019, Physical Review D.

[24]  E. Shintani,et al.  Hadronic vacuum polarization contribution to the muon g−2 with ( 2+1 )-flavor lattice QCD on a larger than (10  fm)4 lattice at the physical point , 2019, Physical Review D.

[25]  V. Lubicz,et al.  Electromagnetic and strong isospin-breaking corrections to the muon g−2 from lattice QCD+QED , 2019, Physical Review D.

[26]  M. Syphers,et al.  Commissioning and first results of the Fermilab Muon Campus , 2019, Physical Review Accelerators and Beams.

[27]  M. Hoferichter,et al.  Dispersion relation for hadronic light-by-light scattering: pion pole , 2018, Journal of High Energy Physics.

[28]  G. Colangelo,et al.  Two-pion contribution to hadronic vacuum polarization , 2018, Journal of High Energy Physics.

[29]  M. Hoferichter,et al.  Dispersion relation for hadronic light-by-light scattering: pion pole , 2018, Journal of High Energy Physics.

[30]  Fermilab Lattice,et al.  Strong-Isospin-Breaking Correction to the Muon Anomalous Magnetic Moment from Lattice QCD at the Physical Point. , 2018 .

[31]  P. Boyle,et al.  Calculation of the Hadronic Vacuum Polarization Contribution to the Muon Anomalous Magnetic Moment. , 2018, Physical review letters.

[32]  Z. Fodor,et al.  Hadronic Vacuum Polarization Contribution to the Anomalous Magnetic Moments of Leptons from First Principles. , 2017, Physical review letters.

[33]  P. Masjuan,et al.  Pseudoscalar-pole contribution to the $(g_{\mu}-2)$: a rational approach , 2017, 1701.05829.

[34]  G. Colangelo,et al.  Dispersion relation for hadronic light-by-light scattering: two-pion contributions , 2016, 1702.07347.

[35]  M. Hayakawa,et al.  Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment from lattice QCD. , 2014, Physical review letters.

[36]  A. Nyffeler,et al.  Remarks on higher-order hadronic corrections to the muon g-2 , 2014, 1403.7512.

[37]  M. Steinhauser,et al.  Hadronic contribution to the muon anomalous magnetic moment to next-to-next-to-leading order , 2014, 1403.6400.

[38]  D. Stöckinger,et al.  The electroweak contributions to $(g-2)_\mu$ after the Higgs boson mass measurement , 2013, 1306.5546.

[39]  M. Hayakawa,et al.  Complete tenth-order QED contribution to the muon g-2. , 2012, Physical review letters.

[40]  E. Koschmieder Theory of the Anomalous Magnetic Moment of the Electron , 2010, 1001.3371.

[41]  M. Hare,et al.  Statistical equations and methods applied to the precision muon (g-2) experiment at BNL , 2007 .

[42]  B. Dale,et al.  NAPLES, ITALY , 2006, Journal of Assisted Reproduction and Genetics.

[43]  A. Vainshtein,et al.  Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment reexamined , 2003, hep-ph/0312226.

[44]  F. Krienen,et al.  The Brookhaven muon (g−2) storage ring high voltage quadrupoles , 2003 .

[45]  W. Marciano,et al.  Refinements in electroweak contributions to the muon anomalous magnetic moment , 2002, hep-ph/0212229.

[46]  R. Shutt,et al.  The Brookhaven muon storage ring magnet , 2001 .

[47]  Yasuhiro Saito,et al.  Erratum , 1978, Nature.

[48]  William D. Phillips,et al.  Magnetic Moment of the Proton in H2O in Bohr Magnetons , 1977 .

[49]  W. D. Phillips,et al.  Magnetic Moment of the Proton in H 2 O in Bohr Magnetons , 1975 .

[50]  Salvador Rivas−Martinez Bangalore, India , 2019, The Statesman’s Yearbook Companion.

[51]  M. Davier,et al.  A new evaluation of the hadronic vacuum polarisation contributions to the muon anomalous magnetic moment and to α( m 2 Z ) , 2019 .

[52]  T. Teubner,et al.  The g − 2 of charged leptons , α ( M 2 Z ) and the hyperfine splitting of muonium , 2019 .

[53]  M. Davier,et al.  Reevaluation of the hadronic vacuum polarisation contributions to the Standard Model predictions of the muon g − 2 and α ( m 2 Z ) using newest hadronic cross-section data , 2018 .

[54]  T. Teubner,et al.  Muon g − 2 and α ð M 2 Z Þ : A new data-based analysis , 2018 .

[55]  W. Marsden I and J , 2012 .

[56]  D. Winne,et al.  Statistical equations and methods applied to the precision muon ð g 2 Þ experiment at BNL , 2007 .

[57]  I. Sledz EXTRACTION METHOD , 2003 .

[58]  M. Janousch,et al.  High precision measurements of the ground state hyperfine structure interval of muonium and of the muon magnetic moment , 1999 .