First-principle studies on the influence of anisotropic pressure on the physical properties of aluminum nitride

In this work, we performed extensive first-principle studies to discuss the effect of uniaxial and biaxial mechanical pressure on the structural and physical properties of AlN piezoelectric material, including the longitudinal elastic constant (C 33), piezoelectric constant (e 33), static dielectric constant (e 33), and mass density (ρ). In particular, we give the relationship between the paramters mentioned above and the longitudinal acoustic wave velocity (V) under anisotropic pressure. Our results show that the applied uniaxial or biaxial pressure in the basal plane has a more obvious influence on physical properties of AlN than the uniaxial pressure along hexagonal axis. The pressure-induced variations of C 33, e 33 and ρ significantly change the V value, whereas the effect of e 33 on V is negligible. Our theoretical results provide useful information for the performance predictions of electro-acoustic mechanics sensors, such as FBAR mechanical sensors, based on the intrinsic properties of piezoelectric materials.

[1]  G. Eckstein,et al.  First results on label-free detection of DNA and protein molecules using a novel integrated sensor technology based on gravimetric detection principles. , 2004, Biosensors & bioelectronics.

[2]  Harold S. Park,et al.  Piezoelectric constants for ZnO calculated using classical polarizable core–shell potentials , 2010, Nanotechnology.

[3]  K. Shepard,et al.  FBAR-CMOS Oscillator Array for Mass-Sensing Applications , 2010, IEEE Sensors Journal.

[4]  I. Akasaki,et al.  Infrared lattice vibration of vapour-grown AlN , 1967 .

[5]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[6]  M. Schreiter,et al.  Sensor for ambient pressure and material strains using a thin film bulk acoustic resonator , 2005, IEEE Ultrasonics Symposium, 2005..

[7]  T. Yokoyama,et al.  Analysis on electromechanical coupling coefficients in AlN-based bulk acoustic wave resonators based on first-principle calculations , 2012, 2012 IEEE International Ultrasonics Symposium.

[8]  Joel F. Rosenbaum,et al.  Bulk Acoustic Wave Theory and Devices , 1988 .

[9]  D. Vanderbilt,et al.  Electric polarization as a bulk quantity and its relation to surface charge. , 1993, Physical review. B, Condensed matter.

[10]  Yalan Li,et al.  Dependence of the Structure, Optical Phonon Modes and Dielectric Properties on Pressure in Wurtzite GaN and AlN , 2015 .

[11]  J. Esteve,et al.  High-frequency sensor technologies for inertial force detection based on thin-film bulk acoustic wave resonators (FBAR) , 2009 .

[12]  Siyuan Zhang,et al.  ScGaN and ScAlN: emerging nitride materials , 2014 .

[13]  K. Tsubouchi,et al.  Zero-Temperature-Coefficient SAW Devices on AlN Epitaxial Films , 1985, IEEE Transactions on Sonics and Ultrasonics.

[14]  Shaoqing Wang,et al.  Ab initio elastic constants for the lonsdaleite phases of C, Si and Ge , 2003 .

[15]  M. Benetti,et al.  Thin film bulk acoustic wave resonator (TFBAR) gas sensor , 2004, IEEE Ultrasonics Symposium, 2004.

[16]  Mohammad Ali Mohammad,et al.  Surface acoustic wave devices for sensor applications , 2016 .

[17]  F. Bechstedt,et al.  Pressure dependence of the dielectric and lattice-dynamical properties of GaN and AlN , 2000 .

[18]  A. Kakanakova-Georgieva,et al.  Defects in hexagonal-AlN sheets by first-principles calculations , 2012 .

[19]  Ventsislav Yantchev,et al.  Lamb wave resonant pressure micro-sensor utilizing a thin-film aluminium nitride membrane , 2011 .

[20]  J. Hayes,et al.  Raman scattering studies on single-crystalline bulk AlN under high pressures , 2001 .

[21]  A. Rappe,et al.  Atomic sublattice decomposition of piezoelectric response in tetragonal Pb Ti O 3 , Ba Ti O 3 , and K Nb O 3 , 2014 .

[22]  P. Masri,et al.  Elastic constants of aluminum nitride , 2007 .

[23]  Stefano de Gironcoli,et al.  Phonons and related crystal properties from density-functional perturbation theory , 2000, cond-mat/0012092.

[24]  Cunjiang Yu,et al.  Film bulk acoustic-wave resonator based ultraviolet sensor , 2009 .

[25]  Yang Gao,et al.  FBAR-on-diaphragm type electro-acoustic resonant micro-accelerometer: a theoretical study , 2016 .

[26]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[27]  Star Ruey-Shing Huang,et al.  High-Performance Film Bulk Acoustic Wave Pressure and Temperature Sensors , 2007 .

[28]  R. Dovesi,et al.  Full piezoelectric tensors of wurtzite and zinc blende ZnO and ZnS by first-principles calculations , 2003 .

[29]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[30]  Jacek A. Majewski,et al.  Nonlinear elasticity in III-N compounds:Ab initiocalculations , 2005 .

[31]  R. H. Lyddane,et al.  On the Polar Vibrations of Alkali Halides , 1941 .

[32]  K. Hirakawa,et al.  Optical and Transport Properties of Single Quantum Well Infrared Photodetectors , 1998 .

[33]  M. Ghebouli,et al.  First-principles study of structural, elastic, electronic, lattice dynamic and optical properties of XN (X=Ga, Al and B) compounds under pressure , 2011 .

[34]  S. Clark,et al.  Variational density-functional perturbation theory for dielectrics and lattice dynamics. , 2006 .

[35]  S. Lepkowski Nonlinear elasticity effect in group III-nitride quantum heterostructures : Ab initio calculations , 2007 .

[36]  Neil L Allan,et al.  Graphitic nanofilms as precursors to wurtzite films: theory. , 2006, Physical review letters.

[37]  Kazuhiro Suzuki,et al.  First-Principles Study on Piezoelectric Constants in Strained BN, AlN, and GaN , 1998 .

[38]  G. Scuseria,et al.  Restoring the density-gradient expansion for exchange in solids and surfaces. , 2007, Physical review letters.

[39]  F. Mota,et al.  Van der Waals stacks of few-layer h-AlN with graphene: an ab initio study of structural, interaction and electronic properties , 2016, Nanotechnology.

[40]  S. A. Giamini,et al.  Evidence for graphite-like hexagonal AlN nanosheets epitaxially grown on single crystal Ag(111) , 2013 .