Thermal stability and oxidation resistance of ZrSiN nanocomposite and ZrN/SiNx multilayered coatings: A comparative study

[1]  Li-Chun Chang,et al.  Oxidation resistance and mechanical properties of Zr–Si–N coatings with cyclic gradient concentration , 2017 .

[2]  V. Uglov,et al.  Growth, structural and mechanical properties of magnetron-sputtered ZrN/SiNx nanolaminated coatings , 2016 .

[3]  B. Prakash,et al.  Influence of microstructure and mechanical properties on the tribological behavior of reactive arc deposited Zr-Si-N coatings at room and high temperature , 2016 .

[4]  R. Aninat,et al.  Structural properties and high temperature oxidation behaviour of Al-Ti-Ta-N and Al-Ti-Ta-Y-N coatings , 2016 .

[5]  G. Abadias,et al.  A load-lock compatible system for in situ electrical resistivity measurements during thin film growth. , 2016, The Review of scientific instruments.

[6]  Li Chen,et al.  Influence of TiN and ZrN insertion layers on the microstructure, mechanical and thermal properties of Cr–Al–N coatings , 2016 .

[7]  G. Soares,et al.  Structural and Mechanical Properties of Zr-Si-N Thin Films Prepared by Reactive Magnetron Sputtering , 2015 .

[8]  V. Uglov,et al.  Thermal stability of nanostructured TiZrSiN thin films subjected to helium ion irradiation , 2015 .

[9]  F. Mücklich,et al.  Tuning hardness and fracture resistance of ZrN/Zr0.63Al0.37N nanoscale multilayers by stress-induced transformation toughening , 2015 .

[10]  V. Uglov,et al.  Structure and hardness of quaternary TiZrSiN thin films deposited by reactive magnetron co-sputtering , 2015 .

[11]  P. Polcik,et al.  Thermal stability and mechanical properties of arc evaporated Ti–Al–Zr–N hard coatings , 2015 .

[12]  Zhengbing Qi,et al.  In situ and ex situ studies of microstructure evolution during high-temperature oxidation of ZrN hard coating , 2015 .

[13]  Dmitri O. Klenov,et al.  Self-organized anisotropic (Zr1−xSix)Ny nanocomposites grown by reactive sputter deposition , 2015 .

[14]  P. Mayrhofer,et al.  Thermal stability and oxidation resistance of arc evaporated TiAlN, TaAlN, TiAlTaN, and TiAlN/TaAlN coatings , 2014 .

[15]  Jun-Ho Kim,et al.  Effect of Si addition on the microstructure, mechanical properties and tribological properties of Zr–Si–N nanocomposite coatings deposited by a hybrid coating system , 2014 .

[16]  Yin-Yu Chang,et al.  Wear behavior and cutting performance of CrAlSiN and TiAlSiN hard coatings on cemented carbide cutting tools for Ti alloys , 2014 .

[17]  K. Chladil,et al.  Increased thermal stability of Ti1 − xAlxN/TiN multilayer coatings through high temperature sputter deposition on powder-metallurgical high-speed steels , 2014 .

[18]  F. Gong,et al.  Correlation between microstructure evolution and high temperature properties of TiAlSiN hard coatings with different Si and Al content , 2014 .

[19]  Yong Du,et al.  Influence of ZrN on oxidation resistance of Ti–Al–N coating , 2014 .

[20]  M. Odén,et al.  Anomalous epitaxial stability of (001) interfaces in ZrN/SiNx multilayers , 2014 .

[21]  G. Soares,et al.  Physicochemical and mechanical properties of crystalline/amorphous CrN/Si3N4 multilayers , 2013 .

[22]  Michael S. Martin,et al.  Size-dependent radiation tolerance in ion irradiated TiN/AlN nanolayer films , 2013 .

[23]  Supriya S. Kanyal,et al.  Silicon (100)/SiO2 by XPS , 2013 .

[24]  P. Patsalas,et al.  Stress, phase stability and oxidation resistance of ternary Ti–Me–N (Me = Zr, Ta) hard coatings , 2013 .

[25]  H. Barshilia,et al.  Electrochemical behavior of superhard nanocomposite coatings of TiN/Si3N4 prepared by reactive DC unbalanced magnetron sputtering , 2013 .

[26]  W. Sproul,et al.  Structure and properties of CrSiN nanocomposite coatings deposited by hybrid modulated pulsed power and pulsed dc magnetron sputtering , 2013 .

[27]  K. Sarakinos,et al.  Atom insertion into grain boundaries and stress generation in physically vapor deposited films , 2013 .

[28]  J. Musil,et al.  Hard nanocomposite coatings: Thermal stability, oxidation resistance and toughness , 2012 .

[29]  R. Wei,et al.  Microstructure and tribological performance of nanocomposite Ti-Si-C-N coatings deposited using hexamethyldisilazane precursor , 2010 .

[30]  P. Villechaise,et al.  Reactive magnetron cosputtering of hard and conductive ternary nitride thin films: Ti–Zr–N and Ti–Ta–N , 2010 .

[31]  E. Meletis,et al.  Mechanical and tribological properties of nanocomposite TiSiN coatings , 2010 .

[32]  D. Babonneau,et al.  In situ optical spectroscopy during deposition of Ag:Si3N4 nanocomposite films by magnetron sputtering , 2010 .

[33]  R. Lad,et al.  Structure and optical properties of Zr1−xSixN thin films on sapphire , 2009 .

[34]  C. Mitterer,et al.  Arc Evaporation of Ti–Al–Ta–N Coatings: The Effect of Bias Voltage and Ta on High-temperature Tribological Properties , 2008 .

[35]  Meng Yuedong,et al.  Microstructure, Hardness and Corrosion Resistance of ZrN Films Prepared by Inductively Coupled Plasma Enhanced RF Magnetron Sputtering , 2008 .

[36]  C. Jeynes,et al.  On the ion irradiation stability of Al/Ti versus AlN/TiN multilayers , 2008 .

[37]  C. Sandu,et al.  Control of morphology (ZrN crystallite size and SiNx layer thickness) in Zr–Si–N nanocomposite thin films , 2008 .

[38]  H. Barshilia,et al.  Deposition and characterization of CrN/Si3N4 and CrAlN/Si3N4 nanocomposite coatings prepared using reactive DC unbalanced magnetron sputtering , 2007 .

[39]  I. Fried,et al.  Thermal stability of nanostructured superhard coatings: A review , 2007 .

[40]  Lars Hultman,et al.  Microstructural design of hard coatings , 2006 .

[41]  Wenjie Zhao,et al.  Crystallization of Si3N4 layers and its influences on the microstructure and mechanical properties of ZrN∕Si3N4 nanomultilayers , 2006 .

[42]  H. Barshilia,et al.  Superhard nanocomposite coatings of TiN/Si3N4 prepared by reactive direct current unbalanced magnetron sputtering , 2006 .

[43]  H. Holleck,et al.  Multifunctional nanolaminated PVD coatings in the system Ti-Al-N-C by combination of metastable fcc phases and nanocomposite microstructures , 2006 .

[44]  Wenjie Zhao,et al.  Influence of silicon on the microstructure and mechanical properties of Zr Si N composite films , 2006 .

[45]  J. Cairney,et al.  Zr–Si–N films fabricated using hybrid cathodic arc and chemical vapour deposition: Structure vs. properties , 2006 .

[46]  F. Lu,et al.  Microstructure evolution of ZrN films annealed in vacuum , 2006 .

[47]  Q. Jiang,et al.  Effects of deposition parameters on microstructure of CrN/Si3N4 nanolayered coatings and their thermal stability , 2005 .

[48]  J. Colligon,et al.  Study of nanocrystalline TiN/Si3N4 thin films deposited using a dual ion beam method , 2005 .

[49]  J. Procházka,et al.  Different approaches to superhard coatings and nanocomposites , 2005 .

[50]  J. Pierson,et al.  Stabilisation of tetragonal zirconia in oxidised ZrSiN nanocomposite coatings , 2004 .

[51]  J. Pierson,et al.  Structural changes in Zr–Si–N films vs. their silicon content , 2004 .

[52]  E. D. Doyle,et al.  A study of the wear mechanisms of Ti1−xAlxN and Ti1−x−yAlxCryN coated high-speed steel twist drills under dry machining conditions , 2003 .

[53]  I. Milošev,et al.  Comparison of TiN, ZrN and CrN hard nitride coatings: Electrochemical and thermal oxidation , 1997 .

[54]  J. Fair,et al.  Thermal nitridation of silicon in a cluster tool , 1992 .

[55]  R. Garvie THE OCCURRENCE OF METASTABLE TETRAGONAL ZIRCONIA AS A CRYSTALLITE SIZE EFFECT , 1965 .