Influence of Lipopolysaccharide on the Surface Proton-Binding Behavior of Shewanella spp.

[1]  Benjamin F. Turner,et al.  A universal surface complexation framework for modeling proton binding onto bacterial surfaces in geologic settings , 2005 .

[2]  S. Lower Directed natural forces of affinity between a bacterium and mineral , 2005 .

[3]  J. Haas Effects of cultivation conditions on acid–base titration properties of Shewanella putrefaciens , 2004 .

[4]  E. Vinogradov,et al.  The structure of the core region of the lipopolysaccharide from Shewanella algae BrY, containing 8-amino-3,8-dideoxy-D-manno-oct-2-ulosonic acid. , 2004, Carbohydrate research.

[5]  Robert M. Smith,et al.  NIST standard reference database 46 version 8.0: NIST critically selected stability constants of metal complexes , 2004 .

[6]  Robert M. Smith,et al.  NIST Critically Selected Stability Constants of Metal Complexes Database , 2004 .

[7]  E. Vinogradov,et al.  The structure of the rough-type lipopolysaccharide from Shewanella oneidensis MR-1, containing 8-amino-8-deoxy-Kdo and an open-chain form of 2-acetamido-2-deoxy-D-galactose. , 2003, Carbohydrate research.

[8]  I. Sutherland,et al.  Comparison of the acid-base behaviour and metal adsorption characteristics of a gram-negative bacterium with other strains , 2003 .

[9]  E. Vinogradov,et al.  The structure of the O-specific polysaccharide chain of the Shewanella algae BrY lipopolysaccharide. , 2003, Carbohydrate Research.

[10]  K. Konhauser,et al.  Characterization and Implications of the Cell Surface Reactivity of Calothrix sp. Strain KC97 , 2002, Applied and Environmental Microbiology.

[11]  E. Vinogradov,et al.  Characterization of the Lipopolysaccharides and Capsules of Shewanella spp , 2002, Applied and Environmental Microbiology.

[12]  R. Wade,et al.  Thermodynamics of U(VI) sorption onto Shewanellaputrefaciens , 2001 .

[13]  N. Yee,et al.  Cd adsorption onto bacterial surfaces: A universal adsorption edge? , 2001 .

[14]  W. Antholine,et al.  Chromium(VI) reductase activity is associated with the cytoplasmic membrane of anaerobically grown Shewanella putrefaciens MR‐1 , 2000, Journal of applied microbiology.

[15]  D. S. Smith,et al.  Characterizing Heterogeneous Bacterial Surface Functional Groups Using Discrete Affinity Spectra for Proton Binding , 1999 .

[16]  D. S. Smith,et al.  Resolving uncertainty in chemical speciation determinations , 1999 .

[17]  E. Roden,et al.  Microbial and surface chemistry controls on reduction of synthetic Fe(III) oxide minerals by the dissimilatory iron‐reducing bacterium Shewanella alga , 1998 .

[18]  Y. Knirel,et al.  Structure of the acidic polysaccharide chain of the lipopolysaccharide of Shewanella alga 48055. , 1998, Carbohydrate research.

[19]  Y. Knirel,et al.  Structure of a phosphorylated polysaccharide from Shewanella putrefaciens strain S29. , 1997, Carbohydrate research.

[20]  Jeremy B. Fein,et al.  A chemical equilibrium model for metal adsorption onto bacterial surfaces , 1997 .

[21]  T. Beveridge,et al.  Pseudomonas aeruginosa PAO1 ceases to express serotype-specific lipopolysaccharide at 45 degrees C , 1996, Journal of bacteriology.

[22]  T. Ezaki,et al.  Isolation and characterization of Shewanella alga from human clinical specimens and emendation of the description of S. alga Simidu et al., 1990, 335. , 1992, International journal of systematic bacteriology.

[23]  J. R. Kramer,et al.  Binding site analysis using linear programming , 1990 .

[24]  K. Nealson,et al.  Bacterial Manganese Reduction and Growth with Manganese Oxide as the Sole Electron Acceptor , 1988, Science.

[25]  C. Calmon,et al.  Book reviewHumic substances in soil, sediment and water: by G.R. Aiken, D.M. McKnight, R.L. Wersham and P. McCarthy (Eds.), John Wiley and Sons, New York, 1985, xiii + 692 pages, $59.95 , 1986 .

[26]  P. Hitchcock,et al.  Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels , 1983, Journal of bacteriology.

[27]  C. Frasch,et al.  A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. , 1982, Analytical biochemistry.