EPR and optical absorption studies on VO2+ ions in L-asparagine monohydrate single crystals.

[1]  R. Kripal,et al.  EPR and optical absorption studies of V O2+ ions in L-asparagine monohydrate , 2007 .

[2]  J. Rao,et al.  EPR and optical absorption studies on VO2+ ions doped in cobalt maleate tetrahydrate single crystals , 2001 .

[3]  F. Köksal,et al.  EPR spectra of VO2+ and Cu2+ ions in di-ammonium d-tartrate single crystals , 2000 .

[4]  P. Sami,et al.  EPR study of Mn(II)-doped CoH6CeMo12O42·12H2O: Host site symmetry and spin-lattice relaxation time , 1999 .

[5]  M. Velayutham,et al.  Spin-lattice relaxation of Co(II) in hexaaquocobalt(II) picrylsulphonate tetrahydrate : An estimate from EPR line width of the dopant, Mn(II) , 1999 .

[6]  J. Rao,et al.  Single crystal EPR study of Mn2+ ions in cobalt maleate tetrahydrate {Co(C4H3O4)2·4H2O} , 1998 .

[7]  J. André,et al.  Electron paramagnetic resonance study of Mn2+-ion-doped nickel bis (hydrogen maleate) hexahydrate single crystals , 1998 .

[8]  V. Jain,et al.  Electron paramagnetic resonance of Mn2+ in Cs2M(SO4)2s6H2O (M = Mg, Zn, Co, Ni) single crystals , 1996 .

[9]  P. Chand,et al.  EPR and optical studies of vanadyl complexes in two host-crystals of tutton salts of thallium , 1993 .

[10]  S. Misra,et al.  EPR and optical absorption studies of a VO2+ -doped Co(NH4)2(SO4)2·6H2O single crystal: Spin-lattice relaxation time of the host Co2+ ions and systematics of EPR spectra in VO2+ -doped M(NH4)2(SO4)2·6H2O (M = Co, Zn, Cd, Mg, Fe) single crystals , 1991 .

[11]  J. Rao,et al.  EPR and optical studies of vanadyl ion in magnesium thallium sulphate hexahydrate , 1988 .

[12]  R. Bansal,et al.  ESR Study of Vanadyl Ion in Potassium Succinate , 1985, December 1.

[13]  N. Satyanarayana,et al.  EPR and electronic absorption studies of vanadyl ions in the Cd(NH4)2(SO4)2⋅6H2O single crystals , 1985 .

[14]  S. Radhakrishna,et al.  Electronic Absorption Spectra of VO2+ in Ammonium Oxalate Monohydrate Crystals , 1980, December 16.

[15]  J. Fee copper proteins systems containing the “Blue” copper center , 1975 .

[16]  R. Österberg Models for copper-protein interaction based on solution and crystal structure studies , 1974 .

[17]  B. Jeżowska-Trzebiatowska Complex compounds as models of biologically active systems , 1974 .

[18]  T. Koetzle,et al.  Precision neutron diffraction structure determination of protein and nucleic acid components. VI. The crystal and molecular structure of the amino acid l‐asparagine monohydrate , 1972 .

[19]  A. Abragam,et al.  Electron paramagnetic resonance of transition ions , 1970 .

[20]  S. McGlynn,et al.  Semi-empirical molecular orbital computations , 1968 .

[21]  J. Selbin The Chemistry of Oxovanadium(IV) , 1965 .

[22]  D. Kivelson,et al.  ESR Studies and the Electronic Structure of Vanadyl Ion Complexes , 1964 .

[23]  J. Selbin,et al.  Electronic Structure, Spectra, and Magnetic Properties of Oxycations. V. The Electronic Spectra of Some Vanadyl Complexes , 1964 .

[24]  H. Gray,et al.  The Electronic Structure of the Vanadyl Ion , 1962 .

[25]  D. Schonland On the Determination of the Principal g-values in Electron Spin Resonance , 1959 .

[26]  A. Maki,et al.  Electron Spin Resonance in Transition Metal Chelates. II. Copper(II) Bis-Salicylaldehyde-Imine , 1958 .

[27]  C. Jørgensen,et al.  Comparative Ligand Field Studies. IV. Vanadium(IV), Titanium(III), Molybdenum(V), and other Systems with one d-Electron. , 1957 .