EPR and optical absorption studies on VO2+ ions in L-asparagine monohydrate single crystals.
暂无分享,去创建一个
[1] R. Kripal,et al. EPR and optical absorption studies of V O2+ ions in L-asparagine monohydrate , 2007 .
[2] J. Rao,et al. EPR and optical absorption studies on VO2+ ions doped in cobalt maleate tetrahydrate single crystals , 2001 .
[3] F. Köksal,et al. EPR spectra of VO2+ and Cu2+ ions in di-ammonium d-tartrate single crystals , 2000 .
[4] P. Sami,et al. EPR study of Mn(II)-doped CoH6CeMo12O42·12H2O: Host site symmetry and spin-lattice relaxation time , 1999 .
[5] M. Velayutham,et al. Spin-lattice relaxation of Co(II) in hexaaquocobalt(II) picrylsulphonate tetrahydrate : An estimate from EPR line width of the dopant, Mn(II) , 1999 .
[6] J. Rao,et al. Single crystal EPR study of Mn2+ ions in cobalt maleate tetrahydrate {Co(C4H3O4)2·4H2O} , 1998 .
[7] J. André,et al. Electron paramagnetic resonance study of Mn2+-ion-doped nickel bis (hydrogen maleate) hexahydrate single crystals , 1998 .
[8] V. Jain,et al. Electron paramagnetic resonance of Mn2+ in Cs2M(SO4)2s6H2O (M = Mg, Zn, Co, Ni) single crystals , 1996 .
[9] P. Chand,et al. EPR and optical studies of vanadyl complexes in two host-crystals of tutton salts of thallium , 1993 .
[10] S. Misra,et al. EPR and optical absorption studies of a VO2+ -doped Co(NH4)2(SO4)2·6H2O single crystal: Spin-lattice relaxation time of the host Co2+ ions and systematics of EPR spectra in VO2+ -doped M(NH4)2(SO4)2·6H2O (M = Co, Zn, Cd, Mg, Fe) single crystals , 1991 .
[11] J. Rao,et al. EPR and optical studies of vanadyl ion in magnesium thallium sulphate hexahydrate , 1988 .
[12] R. Bansal,et al. ESR Study of Vanadyl Ion in Potassium Succinate , 1985, December 1.
[13] N. Satyanarayana,et al. EPR and electronic absorption studies of vanadyl ions in the Cd(NH4)2(SO4)2⋅6H2O single crystals , 1985 .
[14] S. Radhakrishna,et al. Electronic Absorption Spectra of VO2+ in Ammonium Oxalate Monohydrate Crystals , 1980, December 16.
[15] J. Fee. copper proteins systems containing the “Blue” copper center , 1975 .
[16] R. Österberg. Models for copper-protein interaction based on solution and crystal structure studies , 1974 .
[17] B. Jeżowska-Trzebiatowska. Complex compounds as models of biologically active systems , 1974 .
[18] T. Koetzle,et al. Precision neutron diffraction structure determination of protein and nucleic acid components. VI. The crystal and molecular structure of the amino acid l‐asparagine monohydrate , 1972 .
[19] A. Abragam,et al. Electron paramagnetic resonance of transition ions , 1970 .
[20] S. McGlynn,et al. Semi-empirical molecular orbital computations , 1968 .
[21] J. Selbin. The Chemistry of Oxovanadium(IV) , 1965 .
[22] D. Kivelson,et al. ESR Studies and the Electronic Structure of Vanadyl Ion Complexes , 1964 .
[23] J. Selbin,et al. Electronic Structure, Spectra, and Magnetic Properties of Oxycations. V. The Electronic Spectra of Some Vanadyl Complexes , 1964 .
[24] H. Gray,et al. The Electronic Structure of the Vanadyl Ion , 1962 .
[25] D. Schonland. On the Determination of the Principal g-values in Electron Spin Resonance , 1959 .
[26] A. Maki,et al. Electron Spin Resonance in Transition Metal Chelates. II. Copper(II) Bis-Salicylaldehyde-Imine , 1958 .
[27] C. Jørgensen,et al. Comparative Ligand Field Studies. IV. Vanadium(IV), Titanium(III), Molybdenum(V), and other Systems with one d-Electron. , 1957 .