Real-time nanoscale observation of deformation mechanisms in CrCoNi-based medium- to high-entropy alloys at cryogenic temperatures

[1]  G. M. Stocks,et al.  Stacking fault energies of face-centered cubic concentrated solid solution alloys , 2017 .

[2]  H. Kim,et al.  Cryogenic strength improvement by utilizing room-temperature deformation twinning in a partially recrystallized VCrMnFeCoNi high-entropy alloy , 2017, Nature Communications.

[3]  W. J. Weber,et al.  Local Structure and Short-Range Order in a NiCoCr Solid Solution Alloy. , 2017, Physical review letters.

[4]  D. Warner,et al.  Investigating dislocation motion through a field of solutes with atomistic simulations and reaction rate theory , 2017 .

[5]  E. George,et al.  Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi , 2017 .

[6]  Zijiao Zhang,et al.  Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy , 2017, Nature Communications.

[7]  Haruyuki Inui,et al.  Size effect, critical resolved shear stress, stacking fault energy, and solid solution strengthening in the CrMnFeCoNi high-entropy alloy , 2016, Scientific Reports.

[8]  William A. Curtin,et al.  Theory of strengthening in fcc high entropy alloys , 2016 .

[9]  Bernd Gludovatz,et al.  Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures , 2016, Nature Communications.

[10]  Robert O. Ritchie,et al.  Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi , 2015, Nature Communications.

[11]  R. Scattergood,et al.  Tensile properties of low-stacking fault energy high-entropy alloys , 2015 .

[12]  G. Pharr,et al.  Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures , 2014 .

[13]  R. Ritchie,et al.  A fracture-resistant high-entropy alloy for cryogenic applications , 2014, Science.

[14]  Huajian Gao,et al.  Evading the strength–ductility trade-off dilemma in steel through gradient hierarchical nanotwins , 2014, Nature Communications.

[15]  G. Eggeler,et al.  The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy , 2013 .

[16]  E. George,et al.  Tensile properties of high- and medium-entropy alloys , 2013 .

[17]  S. Ringer,et al.  The effect of dislocation density on the interactions between dislocations and twin boundaries in nanocrystalline materials , 2012 .

[18]  E. Lavernia,et al.  The role of stacking faults and twin boundaries in grain refinement of a Cu-Zn alloy processed by high-pressure torsion , 2010 .

[19]  K. Lu,et al.  Strengthening Materials by Engineering Coherent Internal Boundaries at the Nanoscale , 2009, Science.

[20]  A. Cottrell The Nabarro equation for thermally activated plastic glide , 2006 .

[21]  B. Cantor,et al.  Microstructural development in equiatomic multicomponent alloys , 2004 .

[22]  T. Shun,et al.  Nanostructured High‐Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes , 2004 .

[23]  F. Nabarro Work hardening and dynamical recovery of F.C.C. metals in multiple glide , 1989 .

[24]  R. O. Ritchie,et al.  Cryogenic toughness of commercial aluminum-lithium alloys: Role of delamination toughening , 1989 .

[25]  R. Armstrong Theory of the tensile ductile-brittle behavior of poly-crystalline h.c.p. materials, with application to beryllium☆ , 1968 .

[26]  A. Götte,et al.  Metall , 1897 .

[27]  Xiaolei Wu,et al.  Deformation twinning in nanocrystalline materials , 2012 .

[28]  A. Argon,et al.  Strengthening Mechanisms in Crystal Plasticity , 2007 .

[29]  A. S. Argon,et al.  Mechanics and Physics of Brittle to Ductile Transitions in Fracture , 2001 .