Ultrashort pulse laser interaction with dielectrics and polymers

Femtosecond laser micromachining has excited vivid attention in various industrial fields and in medicine owing to the advantages of ultrashort laser pulses compared to long-pulse treatment. These are mainly the reduction of the laser fluence needed to induce ablation and the improvement of the contour sharpness of the laser-generated structures. Recently, special attention was paid to femtosecond laser experiments on nonabsorbing inorganic dielectrics. This is due to the fact that optical damage in dielectric optical elements limits the performance of high-power laser systems. Despite the fact that a large variety of organic polymers can be machined with excimer lasers successfully, the involvement of thermal processes can lead to an unsatisfactory quality of the structures. Ultrashort, fs-laser pulses might be an alternative for the treatment of polymers. Therefore, femtosecond laser machining investigations of dielectrics and polymers are reviewed in this paper. Similarities and differences of the ablation behavior of both material classes are discussed. The influence of the bandgap on the ablation threshold in dependence on the pulse duration, the enhancement of the machining precision with a shortening of the pulse duration, incubation phenomena, and morphological features appearing on the surface after femtosecond laser treatment are mentioned. Possible applications, e.g., in medicine and biosensors, are described.

[1]  A. Tünnermann,et al.  Femtosecond, picosecond and nanosecond laser ablation of solids , 1996 .

[2]  Koji Sugioka,et al.  Dual-beam ablation of fused silica by multiwavelength excitation process using KrF excimer and F2 lasers , 2000 .

[3]  D. E. Spence,et al.  60-fsec pulse generation from a self-mode-locked Ti:sapphire laser. , 1991, Optics letters.

[4]  R. Russo,et al.  Influence of wavelength on fractionation in laser ablation ICP-MS , 2000 .

[5]  Bodil Braren,et al.  Ablation and etching of polymethylmethacrylate by very short (160 fs) ultraviolet (308 nm) laser pulses , 1987 .

[6]  Robin S. Marjoribanks,et al.  Laser shaping of photonic materials: deep-ultraviolet and ultrafast lasers , 2000 .

[7]  G. Grabner,et al.  Corneal lathing using the excimer laser and a computer-controlled positioning system: Part I--Lathing of epikeratoplasty lenticules. , 1991, Refractive & corneal surgery.

[8]  G. Grabner,et al.  Corneal lathing using the excimer laser and a computer-controlled positioning system: Part II--Variable trephination of corneal buttons. , 1991, Refractive & corneal surgery.

[9]  T. Maiman Stimulated Optical Radiation in Ruby , 1960, Nature.

[10]  M. Stuke,et al.  Femtosecond uv excimer laser ablation , 1987 .

[11]  Carsten Fallnich,et al.  Femtosecond lasers as novel tool in dental surgery , 2002 .

[12]  G. Mourou,et al.  Corneal refractive surgery with femtosecond lasers , 1999 .

[13]  D. Bäuerle Laser Processing and Chemistry , 1996 .

[14]  W. Kautek,et al.  Femtosecond laser ablation of silicon–modification thresholds and morphology , 2002 .

[15]  R Birngruber,et al.  Corneal ablation by nanosecond, picosecond, and femtosecond lasers at 532 and 625 nm. , 1989, Archives of ophthalmology.

[16]  M. Lenzner,et al.  FEMTOSECOND LASER-INDUCED DAMAGE OF DIELECTRICS , 1999 .

[17]  Alexander A. Serafetinides,et al.  Picosecond and subpicosecond visible laser ablation of optically transparent polymers , 1998 .

[18]  Jens Limpert,et al.  High-power femtosecond Yb-doped fiber amplifier. , 2002, Optics express.

[19]  Jörg Krüger,et al.  Femtosecond laser damage of a high reflecting mirror , 2002 .

[20]  P. Corkum,et al.  Amplification of 70 fs pulses in a high repetition rate XeCl pumped dye laser amplifier , 1986 .

[21]  Jörg Krüger,et al.  Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate , 2000 .

[22]  F. Beinhorn,et al.  Micro-lens arrays generated by UV laser irradiation of doped PMMA , 1999 .

[23]  J. Ihlemann,et al.  Surface Microstructure Formation by ns-, ps-, and fs-Laser Ablation of an Elastomer Composite , 2000 .

[24]  Josef F. Bille,et al.  Laser-induced optical breakdown on hard and soft tissues and its dependence on the pulse duration: experiment and model , 1996 .

[25]  Wolfgang Kautek,et al.  Femtosecond-Pulse Laser Microstructuring of Semiconducting Materials , 1994 .

[26]  P. Hannaford,et al.  High aspect-ratio micromachining of polymers with an ultrafast laser , 2002 .

[27]  Femtosecond Laser Processing of Soft Materials , 2001 .

[28]  G. Mourou,et al.  Applications of femtosecond lasers in corneal surgery , 2000 .

[29]  W H Knox,et al.  Amplified femtosecond optical pulses and continuum generation at 5-kHz repetition rate. , 1984, Optics letters.

[30]  J. Liu Simple technique for measurements of pulsed Gaussian-beam spot sizes. , 1982, Optics letters.

[31]  Z. Kollia,et al.  Efficient removal of foxing from a medieval Ptolemaic map using a molecular fluorine laser at 157 nm , 2001 .

[32]  Time-resolved investigation of the transient surface reflection changes of subpicosecond excimer laser ablated liquids , 1999 .

[33]  M. Späth,et al.  Time resolved dynamics of subpicosecond laser ablation. , 1993 .

[34]  Gerard Mourou,et al.  Laser‐induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs , 1994 .

[35]  R. Srinivasan,et al.  Self-developing photoetching of poly(ethylene terephthalate) films by far-ultraviolet excimer laser radiation , 1982 .

[36]  S. Silvestri,et al.  Compression of high-energy laser pulses below 5 fs. , 1997, Optics letters.

[37]  J. Siegel,et al.  The influence of thermal diffusion on laser ablation of metal films , 1994 .

[38]  M. Stuke,et al.  Sub-picosecond UV laser ablation of metals , 1995 .

[39]  J. Heitz,et al.  Structure formation in UV-laser-ablated polyimide foils , 1992 .

[40]  D. Basting,et al.  The Development of Excimer Laser Technology – History and Future Prospects , 2001 .

[41]  Razvan Stoian,et al.  Laser ablation of dielectrics with temporally shaped femtosecond pulses , 2002 .

[42]  K. Midorikawa,et al.  Ablation of polymer films by a femtosecond high-peak-power Ti:sapphire laser at 798 nm , 1994 .

[43]  B. Greene,et al.  Generation of optical pulses shorter than 0.1 psec by colliding pulse mode-locking , 1981, IEEE Journal of Quantum Electronics.

[44]  Vesselin N. Paunov,et al.  157-nm laser micromachining of N-BK7 glass and replication for microcontact printing , 2003 .

[45]  G. Müller,et al.  UV exposure of the lens during 193-mm excimer laser corneal surgery. , 1990, Archives of ophthalmology.

[46]  F. Krausz,et al.  Precision laser ablation of dielectrics in the 10-fs regime , 1999 .

[47]  Brent C. Stuart,et al.  Optical ablation by high-power short-pulse lasers , 1996 .

[48]  P. Becker,et al.  Compression of optical pulses to six femtoseconds by using cubic phase compensation. , 1987, Optics letters.

[49]  Boris N. Chichkov,et al.  Far-field and near-field material processing with. femtosecond laser pulses , 1999 .

[50]  Ferenc Krausz,et al.  Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps , 1996 .

[51]  J. Güdde,et al.  Damage threshold dependence on electron–phonon coupling in Au and Ni films , 1998 .

[52]  J. Heitz,et al.  Deposition of Ablation Products from UV-Laser Irradiated Polymer Surfaces , 1998 .

[53]  Wolfgang Kautek,et al.  Ablation experiments on polyimide with femtosecond laser pulses , 1999 .

[54]  Jörg Krüger,et al.  Femtosecond-pulse laser ablation of human corneas , 1994 .

[55]  F. Krausz,et al.  Generation of 0.1-TW 5-fs optical pulses at a 1-kHz repetition rate. , 1997, Optics letters.

[56]  P. Kohns,et al.  Effective laser ablation of enamel and dentine without thermal side effects. , 1997, Journal of laser applications.

[57]  Reginald Birngruber,et al.  Intraocular Nd:YAG laser surgery: laser-tissue interaction, damage range, and reduction of collateral effects , 1990 .

[58]  H. Niino,et al.  Laser Ablation of Transparent Materials by UV fs-Laser Irradiation , 2001 .

[59]  D. Bäuerle,et al.  UV-laser-induced surface topology changes in polyimide , 1996 .

[60]  Gerard Mourou,et al.  SHORT-PULSE LASER DAMAGE IN TRANSPARENT MATERIALS AS A FUNCTION OF PULSE DURATION , 1999 .

[61]  Jörg Krüger,et al.  Subpicosecond-pulse laser microstructuring for enhanced reproducibility of biosensors , 1997 .

[62]  Roland Sauerbrey,et al.  Femtosecond excimer-laser-induced structure formation on polymers , 1994 .

[63]  M. Allmen Laser-beam interactions with materials , 1987 .

[64]  K. Midorikawa,et al.  Effect of Pulse Duration on Ablation Characteristics of Tetrafluoroethylene-hexafluoropropylene Copolymer Film Using Ti:sapphire Laser , 1996 .

[65]  E. Campbell,et al.  Surface charging and impulsive ion ejection during ultrashort pulsed laser ablation. , 2002, Physical review letters.

[66]  David Ashkenasi,et al.  Laser-induced damage in SiO2 and CaF2 with picosecond and femtosecond laser pulses , 1996 .

[67]  Alexander Wokaun,et al.  Photoablation and microstructuring of polyestercarbonates and their blends with a XeCl excimer laser , 1998 .

[68]  Peter R. Herman,et al.  F2-laser ablation patterning of dielectric layers , 2001 .

[69]  N. Bloembergen,et al.  Laser-induced electric breakdown in solids , 1974 .

[70]  G. Grabner,et al.  Photoablation by UV and visible laser radiation of native and doped biological tissue , 1989 .

[71]  K. Sokolowski-Tinten,et al.  Laser-solid interaction in the femtosecond time regime , 1997 .

[72]  A. Wokaun,et al.  Photopolymers designed for laser ablation - photochemical ablation mechanism , 1998 .

[73]  Michael D. Perry,et al.  Ultrashort pulse lasers for hard tissue ablation , 1996 .

[74]  G. Mourou,et al.  Femtosecond Optical Breakdown in Dielectrics , 1998 .

[75]  Heinrich Endert,et al.  Excimer laser: a new tool for precision micromachining , 1995 .

[76]  Michael F. Becker,et al.  Laser-induced damage on single-crystal metal surfaces , 1988 .

[77]  Perry,et al.  Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses. , 1995, Physical review letters.

[78]  Juergen Reif,et al.  Femtosecond laser ablation from dielectric materials: Comparison to arc discharge erosion , 1999 .

[79]  F. Krausz,et al.  Incubation of laser ablation in fused silica with 5-fs pulses , 1999 .

[80]  D. Krajnovich,et al.  Formation of ‘‘intrinsic’’ surface defects during 248 nm photoablation of polyimide , 1993 .

[81]  K König,et al.  Nanodissection of human chromosomes with near-infrared femtosecond laser pulses. , 2001, Optics letters.

[82]  T. Damm,et al.  Picosecond UV Excimer Laser Ablation of LiNbO3 , 1990 .

[83]  Jörg Krüger,et al.  Femtosecond-pulse visible laser processing of transparent materials , 1996 .

[84]  Ferenc Krausz,et al.  Photoablation with sub-10 fs laser pulses , 2000 .

[85]  Brunel,et al.  Thermal response of metals to ultrashort-pulse laser excitation. , 1988, Physical review letters.

[86]  Jean-Claude Diels,et al.  Ultrashort Laser Pulse Phenomena , 1996 .

[87]  G. Grabner,et al.  Corneal lathing using the excimer laser and a computer-controlled positioning system. , 2000, Journal of refractive surgery.