Equivariant analogues of the Euler characteristic and Macdonald type equations
暂无分享,去创建一个
[1] W. Ebeling,et al. Orbifold Zeta Functions for Dual Invertible Polynomials , 2014, Proceedings of the Edinburgh Mathematical Society.
[2] I. L. Velasco,et al. Equivariant Versions of Higher Order Orbifold Euler Characteristics , 2016 .
[3] Junliang Shen,et al. Motivic classes of generalized Kummer schemes via relative power structures , 2015, 1505.02989.
[4] S. Gusein-Zade,et al. Higher-order orbifold Euler characteristics for compact Lie group actions , 2014, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[5] Аксенов Валентин Васильевич. Тороидальное разложение векторного потенциала магнитного поля и его приложения , 2015 .
[6] L. Borisov. Class of the affine line is a zero divisor in the Grothendieck ring , 2014, 1412.6194.
[7] W. Ebeling,et al. Equivariant indices of vector fields and 1-forms , 2013, 1307.2054.
[8] S. Gusein-Zade,et al. Higher order generalized Euler characteristics and generating series , 2013, 1303.5574.
[9] S. Cappell,et al. Characteristic classes of Hilbert schemes of points via symmetric products , 2012, 1204.0473.
[10] Васильев Антон Николаевич. Об оценке среднего рациональных тригонометрических сумм специального вида и ее приложениях , 2013 .
[11] J. Bryan,et al. Motivic Classes of Commuting Varieties via Power Structures , 2012, 1206.5864.
[12] W. Ebeling,et al. Mirror symmetry between orbifold curves and cusp singularities with group action , 2011, 1103.5367.
[13] J. Mazur. Rationality of motivic zeta functions for curves with finite abelian group actions , 2011, 1103.2160.
[14] S. Gusein-Zade,et al. On piecewise isomorphism of some varieties , 2011, 1103.1562.
[15] A. Stapledon. Representations on the cohomology of hypersurfaces and mirror symmetry , 2010, 1004.3446.
[16] Сабир Меджидович Гусейн-Заде,et al. Интегрирование по отношению к эйлеровой характеристике и его приложения@@@Integration with respect to the Euler characteristic and its applications , 2010 .
[17] J. Bryan,et al. Motivic degree zero Donaldson–Thomas invariants , 2009, 0909.5088.
[18] S. Gusein-Zade,et al. On generating series of classes of equivariant Hilbert schemes of fat points , 2009, 0905.1779.
[19] David Bourqui. Produit eulérien motivique et courbes rationnelles sur les variétés toriques , 2006, Compositio Mathematica.
[20] E. Gorsky. Adams operations and power structures , 2008, 0803.3118.
[21] S. Gusein-Zade,et al. On the power structure over the Grothendieck ring of varieties and its applications , 2006, math/0605467.
[22] W. Ebeling,et al. Indices of Vector Fields and 1-Forms on Singular Varieties , 2006, math/0601439.
[23] S. Gusein-Zade,et al. Power structure over the Grothendieck ring of varieties and generating series of Hilbert schemes of points , 2004, math/0407204.
[24] S.M.Gusein-Zade,et al. Radial index and Euler obstruction of a 1-form on a singular variety , 2004, math/0402388.
[25] Franziska Bittner. The universal Euler characteristic for varieties of characteristic zero , 2001, Compositio Mathematica.
[26] Alastair Craw. An introduction to motivic integration , 1999, math/9911179.
[27] S. Gusein-Zade,et al. A power structure over the Grothendieck ring of varieties , 2004 .
[28] J. Rosenberg,et al. The equivariant Lefschetz fixed point theorem for proper cocompact G-manifolds , 2002, math/0208162.
[29] Hirotaka Tamanoi. Generalized orbifold Euler characteristic of symmetric products and equivariant Morava K-theory , 2001, math/0103177.
[30] J. Denef,et al. Geometry on Arc Spaces of Algebraic Varieties , 2000, math/0006050.
[31] M. Kapranov. The elliptic curve in the S-duality theory and Eisenstein series for Kac-Moody groups , 2000, math/0001005.
[32] Per Berglund,et al. Landau-Ginzburg orbifolds, mirror symmetry and the elliptic genus , 1994, hep-th/9401029.
[33] M. Reid,et al. The McKay correspondence for finite subgroups of SL(3,\C) , 1994, alg-geom/9411010.
[34] V. Batyrev,et al. Strong McKay correspondence, string-theoretic Hodge numbers and mirror symmetry , 1994, alg-geom/9410001.
[35] Tristan Hubsch,et al. A generalized construction of mirror manifolds , 1992, Nuclear Physics B.
[36] E. Zaslow. Topological orbifold models and quantum cohomology rings , 1992, hep-th/9211119.
[37] F. Hirzebruch,et al. On the Euler number of an orbifold , 1990 .
[38] M. Atiyah,et al. On equivariant Euler characteristics , 1989 .
[39] E. Witten,et al. Strings on Orbifolds (Ii) , 1988 .
[40] E. Witten,et al. Strings on orbifolds , 1985 .
[41] C. Wall. A Note on Symmetry of Singularities , 1980 .
[42] Tammo tom Dieck,et al. Transformation groups and representation theory , 1979 .
[43] J. H. M. Steenbrink,et al. Mixed Hodge Structure on the Vanishing Cohomology , 1977 .
[44] N. A'campo. La fonction zêta d'une monodromie , 1975 .
[45] Donald C. Knutson,et al. Lambda-Rings and the Representation Theory of the Symmetric Group , 1973 .
[46] J. Verdier. Caractéristique d'Euler-Poincaré , 1973 .
[47] P. Deligne. Theorie de Hodge I , 1970 .
[48] C. H. Clemens,et al. Picard-Lefschetz theorem for families of nonsingular algebraic varieties acquiring ordinary singularities , 1969 .
[49] I. G. MacDonald. The Poincare Polynomial of a Symmetric Product , 1962, Mathematical Proceedings of the Cambridge Philosophical Society.