Equivariant analogues of the Euler characteristic and Macdonald type equations

One of the simplest and, at the same time, most important invariants of a topological space is the Euler characteristic. A generalization of the notion of the Euler characteristic to the equivariant setting, that is, to spaces with an action of a group (say, finite) is far from unique. An equivariant analogue of the Euler characteristic can be defined as an element of the ring of representations of the group or as an element of the Burnside ring of the group. From physics came the notion of the orbifold Euler characteristic, and this was generalized to orbifold Euler characteristics of higher orders. The main property of the Euler characteristic (defined in terms of the cohomology with compact support) is its additivity. On some classes of spaces there are additive invariants other than the Euler characteristic, and they can be regarded as generalized Euler characteristics. For example, the class of a variety in the Grothendieck ring of complex quasi-projective varieties is a universal additive invariant on the class of complex quasi-projective varieties. Generalized analogues of the Euler characteristic can also be defined in the equivariant setting. There is a simple formula — the Macdonald equation — for the generating series of the Euler characteristics of the symmetric powers of a space: it is equal to the series independent of the space, raised to a power equal to the Euler characteristic of the space itself. Equations of a similar kind for other invariants (`equivariant and generalized Euler characteristics') are called Macdonald type equations. This survey discusses different versions of the Euler characteristic in the equivariant setting and describes some of their properties and Macdonald type equations. Bibliography: 59 titles.

[1]  W. Ebeling,et al.  Orbifold Zeta Functions for Dual Invertible Polynomials , 2014, Proceedings of the Edinburgh Mathematical Society.

[2]  I. L. Velasco,et al.  Equivariant Versions of Higher Order Orbifold Euler Characteristics , 2016 .

[3]  Junliang Shen,et al.  Motivic classes of generalized Kummer schemes via relative power structures , 2015, 1505.02989.

[4]  S. Gusein-Zade,et al.  Higher-order orbifold Euler characteristics for compact Lie group actions , 2014, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[5]  Аксенов Валентин Васильевич Тороидальное разложение векторного потенциала магнитного поля и его приложения , 2015 .

[6]  L. Borisov Class of the affine line is a zero divisor in the Grothendieck ring , 2014, 1412.6194.

[7]  W. Ebeling,et al.  Equivariant indices of vector fields and 1-forms , 2013, 1307.2054.

[8]  S. Gusein-Zade,et al.  Higher order generalized Euler characteristics and generating series , 2013, 1303.5574.

[9]  S. Cappell,et al.  Characteristic classes of Hilbert schemes of points via symmetric products , 2012, 1204.0473.

[10]  Васильев Антон Николаевич Об оценке среднего рациональных тригонометрических сумм специального вида и ее приложениях , 2013 .

[11]  J. Bryan,et al.  Motivic Classes of Commuting Varieties via Power Structures , 2012, 1206.5864.

[12]  W. Ebeling,et al.  Mirror symmetry between orbifold curves and cusp singularities with group action , 2011, 1103.5367.

[13]  J. Mazur Rationality of motivic zeta functions for curves with finite abelian group actions , 2011, 1103.2160.

[14]  S. Gusein-Zade,et al.  On piecewise isomorphism of some varieties , 2011, 1103.1562.

[15]  A. Stapledon Representations on the cohomology of hypersurfaces and mirror symmetry , 2010, 1004.3446.

[16]  Сабир Меджидович Гусейн-Заде,et al.  Интегрирование по отношению к эйлеровой характеристике и его приложения@@@Integration with respect to the Euler characteristic and its applications , 2010 .

[17]  J. Bryan,et al.  Motivic degree zero Donaldson–Thomas invariants , 2009, 0909.5088.

[18]  S. Gusein-Zade,et al.  On generating series of classes of equivariant Hilbert schemes of fat points , 2009, 0905.1779.

[19]  David Bourqui Produit eulérien motivique et courbes rationnelles sur les variétés toriques , 2006, Compositio Mathematica.

[20]  E. Gorsky Adams operations and power structures , 2008, 0803.3118.

[21]  S. Gusein-Zade,et al.  On the power structure over the Grothendieck ring of varieties and its applications , 2006, math/0605467.

[22]  W. Ebeling,et al.  Indices of Vector Fields and 1-Forms on Singular Varieties , 2006, math/0601439.

[23]  S. Gusein-Zade,et al.  Power structure over the Grothendieck ring of varieties and generating series of Hilbert schemes of points , 2004, math/0407204.

[24]  S.M.Gusein-Zade,et al.  Radial index and Euler obstruction of a 1-form on a singular variety , 2004, math/0402388.

[25]  Franziska Bittner The universal Euler characteristic for varieties of characteristic zero , 2001, Compositio Mathematica.

[26]  Alastair Craw An introduction to motivic integration , 1999, math/9911179.

[27]  S. Gusein-Zade,et al.  A power structure over the Grothendieck ring of varieties , 2004 .

[28]  J. Rosenberg,et al.  The equivariant Lefschetz fixed point theorem for proper cocompact G-manifolds , 2002, math/0208162.

[29]  Hirotaka Tamanoi Generalized orbifold Euler characteristic of symmetric products and equivariant Morava K-theory , 2001, math/0103177.

[30]  J. Denef,et al.  Geometry on Arc Spaces of Algebraic Varieties , 2000, math/0006050.

[31]  M. Kapranov The elliptic curve in the S-duality theory and Eisenstein series for Kac-Moody groups , 2000, math/0001005.

[32]  Per Berglund,et al.  Landau-Ginzburg orbifolds, mirror symmetry and the elliptic genus , 1994, hep-th/9401029.

[33]  M. Reid,et al.  The McKay correspondence for finite subgroups of SL(3,\C) , 1994, alg-geom/9411010.

[34]  V. Batyrev,et al.  Strong McKay correspondence, string-theoretic Hodge numbers and mirror symmetry , 1994, alg-geom/9410001.

[35]  Tristan Hubsch,et al.  A generalized construction of mirror manifolds , 1992, Nuclear Physics B.

[36]  E. Zaslow Topological orbifold models and quantum cohomology rings , 1992, hep-th/9211119.

[37]  F. Hirzebruch,et al.  On the Euler number of an orbifold , 1990 .

[38]  M. Atiyah,et al.  On equivariant Euler characteristics , 1989 .

[39]  E. Witten,et al.  Strings on Orbifolds (Ii) , 1988 .

[40]  E. Witten,et al.  Strings on orbifolds , 1985 .

[41]  C. Wall A Note on Symmetry of Singularities , 1980 .

[42]  Tammo tom Dieck,et al.  Transformation groups and representation theory , 1979 .

[43]  J. H. M. Steenbrink,et al.  Mixed Hodge Structure on the Vanishing Cohomology , 1977 .

[44]  N. A'campo La fonction zêta d'une monodromie , 1975 .

[45]  Donald C. Knutson,et al.  Lambda-Rings and the Representation Theory of the Symmetric Group , 1973 .

[46]  J. Verdier Caractéristique d'Euler-Poincaré , 1973 .

[47]  P. Deligne Theorie de Hodge I , 1970 .

[48]  C. H. Clemens,et al.  Picard-Lefschetz theorem for families of nonsingular algebraic varieties acquiring ordinary singularities , 1969 .

[49]  I. G. MacDonald The Poincare Polynomial of a Symmetric Product , 1962, Mathematical Proceedings of the Cambridge Philosophical Society.