Evolutionary Design of Neural Network Architectures Using a Descriptive Encoding Language

Evolutionary algorithms are a promising approach to the automated design of artificial neural networks, but they require a compact and efficient genetic encoding scheme to represent repetitive and recurrent modules in networks. We present a problem-independent approach based on a human-readable and writable descriptive encoding using a high-level language. This encoding is based on developmental methods and a modular neural network paradigm. Here, we show that our approach works effectively by demonstrating that it can specify the search space compactly for "n-partition problems" and for sequence generation problems requiring recurrent networks, and that the evolved neural networks are parsimonious, modular, and capable of high-performance. We conclude that this approach based on high-level descriptive encoding can be useful in designing hierarchical, modular networks which may have recurrent connectivity, and is effective in describing the evolutionary search space, as well as the final neural networks resulting from the evolutionary process

[1]  Martin A. Riedmiller,et al.  A direct adaptive method for faster backpropagation learning: the RPROP algorithm , 1993, IEEE International Conference on Neural Networks.

[2]  Ling Guan,et al.  Modularity in neural computing , 1999, Proc. IEEE.

[3]  J.A. Perez-Ortiz,et al.  A comparison between recurrent neural architectures for real-time nonlinear prediction of speech signals , 2001, Neural Networks for Signal Processing XI: Proceedings of the 2001 IEEE Signal Processing Society Workshop (IEEE Cat. No.01TH8584).

[4]  S. Michael,et al.  Toward Mapping the Evolved Functional Organization of Mind and Brain , 2006 .

[5]  G. Lewicki,et al.  Approximation by Superpositions of a Sigmoidal Function , 2003 .

[6]  Christian Jacob,et al.  Genetic L-System Programming , 1994, PPSN.

[7]  C. Lee Giles,et al.  Extracting and Learning an Unknown Grammar with Recurrent Neural Networks , 1991, NIPS.

[8]  Andrew Lumsden,et al.  The Developing Brain , 2002 .

[9]  Michael O'Neill,et al.  Grammatical evolution - evolutionary automatic programming in an arbitrary language , 2003, Genetic programming.

[10]  Terrence J. Sejnowski,et al.  Parallel Networks that Learn to Pronounce English Text , 1987, Complex Syst..

[11]  S. Dimond,et al.  Evolution and lateralization of the brain , 1977 .

[12]  Kenneth A. De Jong,et al.  Cooperative Coevolution: An Architecture for Evolving Coadapted Subcomponents , 2000, Evolutionary Computation.

[13]  Kishan G. Mehrotra,et al.  Elements of artificial neural networks , 1996 .

[14]  Sung-Bae Cho,et al.  Evolutionary Learning of Modular Neural Networks with Genetic Programming , 1998, Applied Intelligence.

[15]  H. Kitano Neurogenetic learning: an integrated method of designing and training neural networks using genetic algorithms , 1994 .

[16]  James A. Reggia,et al.  Cost minimization during simulated evolution of paired neural networks leads to asymmetries and specialization , 2003, Cognitive Systems Research.

[17]  Stefano Nolfi,et al.  Duplication of Modules Facilitates the Evolution of Functional Specialization , 1999, Artificial Life.

[18]  S. Schultz Principles of Neural Science, 4th ed. , 2001 .

[19]  M. O'Neill,et al.  Grammatical evolution , 2001, GECCO '09.

[20]  Frédéric Gruau,et al.  Automatic Definition of Modular Neural Networks , 1994, Adapt. Behav..

[21]  John R. Koza,et al.  Genetic Programming III: Darwinian Invention & Problem Solving , 1999 .

[22]  Lee Spector,et al.  Evolving Graphs and Networks with Edge Encoding: Preliminary Report , 1996 .

[23]  Vasant Honavar,et al.  Evolving Neuro-Controllers and Sensors for Artificial Agents , 2001 .

[24]  Carlos A. Coello Coello,et al.  Evolutionary Multi-Objective Optimization: A Critical Review , 2003 .

[25]  Simon Haykin,et al.  Neural networks , 1994 .

[26]  D. Thieffry,et al.  Modularity in development and evolution. , 2000, BioEssays : news and reviews in molecular, cellular and developmental biology.

[27]  George B. Kauffman,et al.  Creative Evolutionary Systems. Peter J. Bentley and David W. Corne, editors. Academic Press: San Diego, Morgan Kaufmann: San Francisco. £43.95. ISBN 1-55860-673-4 , 2002 .

[28]  Xin Yao,et al.  Evolving artificial neural networks , 1999, Proc. IEEE.

[29]  Domenico Parisi,et al.  Evolving Modular Architectures for Neural Networks , 2000, NCPW.

[30]  Peter J. Bentley,et al.  CREATIVE EVOLUTIONARY SYSTEMS , 2001 .

[31]  H. Killackey Evolution of the human brain: A neuroanatomical perspective. , 1995 .

[32]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[33]  Peter M. Todd,et al.  Designing Neural Networks using Genetic Algorithms , 1989, ICGA.

[34]  David B. Fogel,et al.  Evolving Neural Control Systems , 1995, IEEE Expert.

[35]  James A. Reggia,et al.  A Descriptive Encoding Language for Evolving Modular Neural Networks , 2004, GECCO.

[36]  Leonardo Franco,et al.  Generalization properties of modular networks: implementing the parity function , 2001, IEEE Trans. Neural Networks.

[37]  Gary Montague,et al.  Genetic programming: an introduction and survey of applications , 1997 .

[38]  V. Mountcastle Perceptual Neuroscience: The Cerebral Cortex , 1998 .

[39]  Larry D. Pyeatt,et al.  A comparison between cellular encoding and direct encoding for genetic neural networks , 1996 .

[40]  Gregory Hornby,et al.  Shortcomings with Tree-Structured Edge Encodings for Neural Networks , 2004, GECCO.

[41]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[42]  T. S. Hussain,et al.  Network generating attribute grammar encoding , 1998, 1998 IEEE International Joint Conference on Neural Networks Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36227).

[43]  Günter P. Wagner,et al.  Adaptation and the Modular Design of Organisms , 1995, ECAL.

[44]  Ronald L. Rivest,et al.  Training a 3-node neural network is NP-complete , 1988, COLT '88.

[45]  P. Nordin Genetic Programming III - Darwinian Invention and Problem Solving , 1999 .

[46]  M. Carpenter The cerebral cortex , 1976 .

[47]  Christian Jacob,et al.  Evolution of neural net architectures by a hierarchical grammar-based genetic system , 1993 .

[48]  Jeffrey L. Elman,et al.  Finding Structure in Time , 1990, Cogn. Sci..

[49]  Michael I. Jordan Attractor dynamics and parallelism in a connectionist sequential machine , 1990 .

[50]  E. Ruppin Evolutionary autonomous agents: A neuroscience perspective , 2002, Nature Reviews Neuroscience.

[51]  James A. Reggia,et al.  Learning word pronunciations using a recurrent neural network , 2001, IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222).

[52]  Bart L. M. Happel,et al.  Design and evolution of modular neural network architectures , 1994, Neural Networks.

[53]  L. Cosmides,et al.  9 Toward Mapping the Evolved Functional Organization of Mind and Brain , 2000 .