Itô formula for stochastic integrals w.r.t. compensated Poisson random measures on separable Banach spaces

We prove the Ito formula (1.3) for Banach valued functions acting on stochastic processes with jumps, the martingale part given by stochastic integrals of time dependent Banach valued random functions w.r.t. compensated Poisson random measures. Such stochastic integrals have been discussed by Mandrekar and Rüdiger, Stochastics and Stochastic Reports 78(4), 189–212 (2006) and Rüdiger (2004), Stochastics and Stochastic Reports, 76, pp. 213–242.

[1]  Additive Processes on Nuclear Spaces , 1984 .

[2]  J. Dunnage RANDOM POLYNOMIALS (Probability and Mathematical Statistics: A Series of Monographs and Textbooks) , 1988 .

[3]  Kiyosi Itô,et al.  On stochastic processes (I) , 1941 .

[4]  G. Pisier Probabilistic methods in the geometry of Banach spaces , 1986 .

[5]  Sergio Albeverio,et al.  Analytic and Probabilistic Aspects of Lévy Processes and Fields in Quantum Theory , 2001 .

[6]  B. Rüdiger Stochastic integration with respect to compensated Poisson random measures on separable Banach spaces , 2004 .

[7]  Stig Larsson,et al.  Introduction to stochastic partial differential equations , 2008 .

[8]  S. Albeverio,et al.  Stochastic Integrals and the Lévy–Ito Decomposition Theorem on Separable Banach Spaces , 2005 .

[9]  S. Ustunel Stochastic integration on nuclear spaces and its applications , 1982 .

[10]  P. Balachandran Stochastic Integration , 2021, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics.

[11]  Nicolas Privault,et al.  Poisson stochastic integration in Hilbert spaces , 1999 .

[12]  E. Dettweiler Banach space valued processes with independent increments and stochastic integration , 1983 .

[13]  A. Bensoussan,et al.  Contrôle impulsionnel et inéquations quasi variationnelles , 1982 .

[14]  D. Aldous The Central Limit Theorem for Real and Banach Valued Random Variables , 1981 .

[15]  P. Protter Stochastic integration and differential equations : a new approach , 1990 .

[16]  Claudia Knoche,et al.  SPDEs in infinite dimension with Poisson noise , 2004 .

[17]  S. Albeverio,et al.  Infinite-dimensional stochastic differential equations obtained by subordination and related Dirichlet forms , 2003 .

[18]  Werner Linde,et al.  Infinitely divisible and stable measures on Banach spaces , 1983 .

[19]  D. Applebaum Lévy Processes and Stochastic Calculus: Preface , 2009 .

[20]  Stochastic partial differential equations driven by Lévy space-time white noise , 2004, math/0407131.

[21]  Michael B. Marcus,et al.  $L^1$-Norm of Infinitely Divisible Random Vectors and Certain Stochastic Integrals , 2001 .

[22]  Maurizio Pratelli,et al.  Intégration stochastique et géométrie des espaces de Banach , 1988 .

[23]  A. V. Skorohod,et al.  The theory of stochastic processes , 1974 .

[24]  Vidyadhar Mandrekar,et al.  L√©vy Noises and Stochastic Integrals on Banach Spaces* , 2005 .

[25]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[26]  E. Hausenblas Existence, Uniqueness and Regularity of Parabolic SPDEs Driven by Poisson Random Measure , 2005 .

[27]  S. Kwapień,et al.  Random Series and Stochastic Integrals: Single and Multiple , 1992 .

[28]  G. Pisier Martingales with values in uniformly convex spaces , 1975 .

[29]  P. Protter Stochastic integration and differential equations , 1990 .

[30]  B. Rozovskii,et al.  Normalized stochastic integrals in topological vector spaces , 1998 .

[31]  Jan Rosiński,et al.  Random integrals of Banach space valued functions , 1984 .

[32]  E. Hausenblas A note on the Itô formula of stochastic integrals in Banach spaces , 2006 .

[33]  I. I. Gikhman,et al.  The Theory of Stochastic Processes III , 1979 .

[34]  Michel Métivier,et al.  Semimartingales: A course on stochastic processes , 1986 .

[35]  V. Mandrekar,et al.  Existence and uniqueness of path wise solutions for stochastic integral equations driven by Lévy noise on separable Banach spaces , 2006 .

[36]  J. Rosínski Bilinear random integrals , 1987 .

[37]  S. Albeverio,et al.  Parabolic SPDEs driven by Poisson white noise , 1998 .

[38]  Stanisław Kwapień,et al.  Isomorphic characterizations of inner product spaces by orthogonal series with vector valued coefficients , 1972 .

[39]  G. Samorodnitsky Random series and stochastic integrals:single and multiple , 1994 .

[40]  V. Mandrekar,et al.  Generalized Ornstein-Uhlenbeck Processes on Separable Banach Spaces , 2007 .

[41]  J. Wloka,et al.  Die Grundlagen der Theorie der Markoffschen Prozesse , 1961 .

[42]  A. Kolmogorov,et al.  Elementi di teoria delle funzioni e di analisi funzionale , 1980 .

[43]  J. Pellaumail,et al.  Formule de Ito pour des processus non continus à valeurs dans des espaces de Banach , 1974 .

[44]  J. Mason,et al.  Operator-limit distributions in probability theory , 1993 .

[45]  S. Kotz,et al.  The Theory Of Stochastic Processes I , 1974 .

[46]  A. Skorokhod,et al.  Studies in the theory of random processes , 1966 .