THE PROPERTIES OF THE STAR-FORMING INTERSTELLAR MEDIUM AT z = 0.8–2.2 FROM HiZELS: STAR FORMATION AND CLUMP SCALING LAWS IN GAS-RICH, TURBULENT DISKS

We present adaptive optics assisted integral field spectroscopy of nine Hα-selected galaxies at z = 0.84–2.23 drawn from the HiZELS narrowband survey. Our observations map the kinematics of these star-forming galaxies on ∼kpc scales. We demonstrate that within the interstellar medium of these galaxies, the velocity dispersion of the star-forming gas (σ) follows a scaling relation σ∝Σ1/nSFR + constant (where ΣSFR is the star formation surface density and the constant includes the stellar surface density). Assuming the disks are marginally stable (Toomre Q = 1), this follows from the Kennicutt–Schmidt relation (ΣSFR = AΣngas), and we derive best-fit parameters of n = 1.34 ± 0.15 and A = 3.4+2.5−1.6 × 10−4 M☉ yr−1 kpc−2, consistent with the local relation, and implying cold molecular gas masses of Mgas = 109–10 M☉ and molecular gas fractions of Mgas/(Mgas + M⋆) = 0.3 ± 0.1, with a range of 10%–75%. We also identify 11 ∼kpc-scale star-forming regions (clumps) within our sample and show that their sizes are comparable to the wavelength of the fastest growing mode. The luminosities and velocity dispersions of these clumps follow the same scaling relations as local H ii regions, although their star formation densities are a factor ∼15 ± 5 × higher than typically found locally. We discuss how the clump properties are related to the disk, and show that their high masses and luminosities are a consequence of the high disk surface density.

[1]  Michele Cirasuolo,et al.  A large Hα survey at z = 2.23, 1.47, 0.84 and 0.40: the 11 Gyr evolution of star-forming galaxies from HiZELS , 2012, 1202.3436.

[2]  Edinburgh,et al.  The properties of the star-forming interstellar medium at z = 0.84-2.23 from HiZELS : mapping the internal dynamics and metallicity gradients in high-redshift disc galaxies. , 2012, 1209.1395.

[3]  P. Hopkins An excursion-set model for the structure of giant molecular clouds and the interstellar medium , 2012 .

[4]  C. Blake,et al.  Scaling relations of star-forming regions: from kpc-sized clumps to H ii regions , 2012, 1203.0309.

[5]  H. Ferguson,et al.  MULTI-WAVELENGTH VIEW OF KILOPARSEC-SCALE CLUMPS IN STAR-FORMING GALAXIES AT z ∼ 2 , 2011, 1110.3800.

[6]  P. Hopkins An Excursion-Set Model for the Structure of GMCs and the ISM , 2011, 1111.2863.

[7]  P. Hopkins,et al.  The structure of the interstellar medium of star‐forming galaxies , 2011, 1110.4636.

[8]  P. Cox,et al.  THE INTERSTELLAR MEDIUM IN DISTANT STAR-FORMING GALAXIES: TURBULENT PRESSURE, FRAGMENTATION, AND CLOUD SCALING RELATIONS IN A DENSE GAS DISK AT z = 2.3 , 2011, 1110.2780.

[9]  A. Dekel,et al.  A UNIVERSAL, LOCAL STAR FORMATION LAW IN GALACTIC CLOUDS, NEARBY GALAXIES, HIGH-REDSHIFT DISKS, AND STARBURSTS , 2011, 1109.4150.

[10]  McGill,et al.  Star formation at z=1.47 from HiZELS: an Hα+[O ii] double-blind study* , 2011, 1109.1830.

[11]  G. Cresci,et al.  HOW WELL CAN WE MEASURE THE INTRINSIC VELOCITY DISPERSION OF DISTANT DISK GALAXIES? , 2011, 1108.0285.

[12]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: high-resolution kinematics of luminous star-forming galaxies , 2011, 1107.3338.

[13]  A. Escala A LAW FOR STAR FORMATION IN GALAXIES , 2011, 1104.3596.

[14]  R. Genzel,et al.  CONSTRAINTS ON THE ASSEMBLY AND DYNAMICS OF GALAXIES. II. PROPERTIES OF KILOPARSEC-SCALE CLUMPS IN REST-FRAME OPTICAL EMISSION OF z ∼ 2 STAR-FORMING GALAXIES , 2011, 1104.0248.

[15]  I. Smail,et al.  ON THE EVOLUTION OF THE MOLECULAR GAS FRACTION OF STAR-FORMING GALAXIES , 2011, 1102.3694.

[16]  R. Genzel,et al.  CONSTRAINTS ON THE ASSEMBLY AND DYNAMICS OF GALAXIES. I. DETAILED REST-FRAME OPTICAL MORPHOLOGIES ON KILOPARSEC SCALE OF z ∼ 2 STAR-FORMING GALAXIES , 2010, 1011.1507.

[17]  G. Zamorani,et al.  THE SINS SURVEY OF z ∼ 2 GALAXY KINEMATICS: PROPERTIES OF THE GIANT STAR-FORMING CLUMPS , 2010, 1011.5360.

[18]  J. Schaye,et al.  The rates and modes of gas accretion on to galaxies and their gaseous haloes , 2010, 1011.2491.

[19]  I. Smail,et al.  The dependence of star formation activity on environment and stellar mass at z∼ 1 from the HiZELS-Hα survey , 2010, 1007.2642.

[20]  B. Weiner,et al.  A study of the gas–star formation relation over cosmic time , 2010, 1003.5180.

[21]  M. Krumholz,et al.  ON THE DYNAMICS AND EVOLUTION OF GRAVITATIONAL INSTABILITY-DOMINATED DISKS , 2010, 1003.4513.

[22]  Harvard,et al.  Intense star formation within resolved compact regions in a galaxy at z = 2.3 , 2010, Nature.

[23]  M. C. Cooper,et al.  High molecular gas fractions in normal massive star-forming galaxies in the young Universe , 2010, Nature.

[24]  A. Dekel,et al.  Survival of star-forming giant clumps in high-redshift galaxies , 2010, 1001.0765.

[25]  D. Elbaz,et al.  VERY HIGH GAS FRACTIONS AND EXTENDED GAS RESERVOIRS IN z = 1.5 DISK GALAXIES , 2009, 0911.2776.

[26]  Johan Richard,et al.  Resolved spectroscopy of gravitationally lensed galaxies: recovering coherent velocity fields in subluminous z ~ 2-3 galaxies , 2009, 0910.4488.

[27]  A. Dekel,et al.  High-redshift clumpy discs and bulges in cosmological simulations , 2009, 0907.3271.

[28]  Cambridge,et al.  A Spatially Resolved Map of the Kinematics, Star-Formation and Stellar Mass Assembly in a Star-Forming Galaxy at z=4.9 , 2009, 0909.0111.

[29]  S. White,et al.  Galaxies–intergalactic medium interaction calculation – I. Galaxy formation as a function of large-scale environment , 2009, 0906.4350.

[30]  Shy Genel,et al.  THE SINS SURVEY: SINFONI INTEGRAL FIELD SPECTROSCOPY OF z ∼ 2 STAR-FORMING GALAXIES , 2009, 0903.1872.

[31]  P. Buschkamp,et al.  THE SINS SURVEY: MODELING THE DYNAMICS OF z ∼ 2 GALAXIES AND THE HIGH-z TULLY–FISHER RELATION , 2009, 0902.4701.

[32]  L. Chemin,et al.  PHYSICAL CONDITIONS IN THE INTERSTELLAR MEDIUM OF INTENSELY STAR-FORMING GALAXIES AT REDSHIFT∼2 , 2009, 0902.2784.

[33]  Oxford,et al.  HiZELS:a high-redshift survey of Hα emitters - II. the nature of star-forming galaxies at z = 0.84 , 2009, 0901.4114.

[34]  J. Papaloizou,et al.  The excitation of spiral density waves through turbulent fluctuations in accretion discs – II. Numerical simulations with MRI-driven turbulence , 2008, 0812.2471.

[35]  B. Elmegreen,et al.  BULGE AND CLUMP EVOLUTION IN HUBBLE ULTRA DEEP FIELD CLUMP CLUSTERS, CHAINS AND SPIRAL GALAXIES , 2008, 0810.5404.

[36]  R. Teyssier,et al.  Cold streams in early massive hot haloes as the main mode of galaxy formation , 2008, Nature.

[37]  J. Bland-Hawthorn,et al.  The Galaxy Disk in Cosmological Context , 2009 .

[38]  B. Madore,et al.  THE STAR FORMATION EFFICIENCY IN NEARBY GALAXIES: MEASURING WHERE GAS FORMS STARS EFFECTIVELY , 2008, 0810.2556.

[39]  S. Rabien,et al.  From Rings to Bulges: Evidence for Rapid Secular Galaxy Evolution at z ~ 2 from Integral Field Spectroscopy in the SINS Survey , 2008, 0807.1184.

[40]  A. Escala,et al.  Stability of Galactic Gas Disks and the Formation of Massive Clusters , 2008, 0806.0853.

[41]  R. J. Ivison,et al.  HiZELS: a high-redshift survey of Hα emitters – I. The cosmic star formation rate and clustering at z= 2.23 , 2008, 0805.2861.

[42]  S. Ravindranath,et al.  Resolved Galaxies in the Hubble Ultra Deep Field: Star Formation in Disks at High Redshift , 2007, astro-ph/0701121.

[43]  M. Richer,et al.  Hα line profiles for a sample of supergiant HII regions I. The main spectral component , 2006 .

[44]  A. Hopkins,et al.  On the Normalization of the Cosmic Star Formation History , 2006, astro-ph/0601463.

[45]  A. Stark,et al.  Giant Molecular Clouds Are More Concentrated toward Spiral Arms than Smaller Clouds , 2005, astro-ph/0509694.

[46]  C. Maraston,et al.  Young star cluster complexes in NGC 4038/39 - Integral field spectroscopy using VIMOS-VLT , 2005, astro-ph/0509249.

[47]  E. Telles,et al.  THE L–σ RELATION OF LOCAL H ii GALAXIES , 2011, 1104.4719.

[48]  C. Giammanco,et al.  The internal dynamical equilibrium of H II regions: A statistical study , 2004, astro-ph/0410484.

[49]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[50]  W. V. Altena,et al.  Local Surface Density of the Galactic Disk from a Three-Dimensional Stellar Velocity Sample , 2003, astro-ph/0308276.

[51]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[52]  Jr.,et al.  SINGS: The SIRTF Nearby Galaxies Survey , 2001, astro-ph/0305437.

[53]  R. Rafikov The local axisymmetric instability criterion in a thin, rotating, multicomponent disc , 2000, astro-ph/0007058.

[54]  G. Tenorio-Tagle,et al.  On the Size and Luminosity versus Velocity Dispersion Correlations from the Giant H II Regions in the Irregular Galaxy NGC 4449 , 2000 .

[55]  Denis Foo Kune,et al.  Starburst99: Synthesis Models for Galaxies with Active Star Formation , 1999, astro-ph/9902334.

[56]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[57]  Jr.,et al.  The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.

[58]  M. Feast,et al.  Galactic kinematics of Cepheids from Hipparcos proper motions , 1997, astro-ph/9706293.

[59]  B. Elmegreen Molecular cloud formation by gravitational instabilities in a clumpy interstellar medium , 1989 .

[60]  R. Terlevich,et al.  The dynamics and chemical composition of giant extragalactic H II regions , 1981 .

[61]  John I. Castor,et al.  Radiation-driven winds in Of stars. , 1975 .

[62]  A. Toomre,et al.  On the gravitational stability of a disk of stars , 1964 .