Global minimum structure searches via particle swarm optimization

Novel implementation of the evolutionary approach known as particle swarm optimization (PSO) capable of finding the global minimum of the potential energy surface of atomic assemblies is reported. This is the first time the PSO technique has been used to perform global optimization of minimum structure search for chemical systems. Significant improvements have been introduced to the original PSO algorithm to increase its efficiency and reliability and adapt it to chemical systems. The developed software has successfully found the lowest‐energy structures of the LJ26 Lennard‐Jones cluster, anionic silicon hydride Si2H  5− , and triply hydrated hydroxide ion OH− (H2O)3. It requires relatively small population sizes and demonstrates fast convergence. Efficiency of PSO has been compared with simulated annealing, and the gradient embedded genetic algorithm. © 2007 Wiley Periodicals, Inc. J Comput Chem, 2007

[1]  D. Robinson,et al.  Observation of the vibration-rotation spectrum of the SiH radical at 5 μm by laser magnetic resonance , 1984 .

[2]  L. Wille,et al.  Computational complexity of the ground-state determination of atomic clusters , 1985 .

[3]  A. Mackay A dense non-crystallographic packing of equal spheres , 1962 .

[4]  H. Schaefer,et al.  The fundamental vibrational frequencies of the silyl anion (SiH- 3) , 1992 .

[5]  S. Xantheas Theoretical Study of Hydroxide Ion-Water Clusters , 1995 .

[6]  T. Kitsopoulos,et al.  Study of the low‐lying electronic states of Si2 and Si−2 using negative ion photodetachment techniques , 1991 .

[7]  B. Meyerson,et al.  Mechanistic Studies of Chemical Vapor Deposition , 1987 .

[8]  L. Piela,et al.  On the stability of conformers , 1994 .

[9]  J. Berkowitz,et al.  Photoionization mass spectrometric studies of SiH/sub n/ (n = 1--4) , 1987 .

[10]  L. Curtiss,et al.  Theoretical study of Si2Hn (n=0–6) and Si2H+n (n=0–7): Appearance potentials, ionization potentials, and enthalpies of formation , 1991 .

[11]  Marvin Johnson,et al.  Infrared Characterization of the Icosahedral Shell Closing in Cl-·H2O·Arn(1 ≤n≤ 13) Clusters , 2002 .

[12]  H. Schaefer,et al.  Disilyne (Si2H2) revisited , 1990 .

[13]  Anastassia N Alexandrova,et al.  Search for the Lin(0/+1/-1) (n = 5-7) Lowest-Energy Structures Using the ab Initio Gradient Embedded Genetic Algorithm (GEGA). Elucidation of the Chemical Bonding in the Lithium Clusters. , 2005, Journal of chemical theory and computation.

[14]  K. Ho,et al.  Structural optimization of Lennard-Jones clusters by a genetic algorithm , 1996 .

[15]  Harold A. Scheraga,et al.  Some approaches to the multiple‐minima problem in the calculation of polypeptide and protein structures , 1992 .

[16]  Ho,et al.  Molecular geometry optimization with a genetic algorithm. , 1995, Physical review letters.

[17]  Linda J. Broadbelt,et al.  Many-Body Optimization Using an Ab Initio Monte Carlo Method , 2003, J. Chem. Inf. Comput. Sci..

[18]  M. R. Hoare,et al.  Geometry and Stability of “Spherical” f.c.c. Microcrystallites , 1972 .

[19]  H. Schaefer,et al.  The electron affinities of the silicon fluorides SiFn (n=1–5) , 1996 .

[20]  Bernd Hartke,et al.  Global cluster geometry optimization by a phenotype algorithm with Niches: Location of elusive minima, and low‐order scaling with cluster size , 1999 .

[21]  Antonietta Tomasulo,et al.  Density functional studies of aluminum phosphide cluster structures , 1996 .

[22]  Y. Yamaguchi,et al.  The X˜1A1, a˜3B1, a˜1B˜1, and B˜1A1 electronic states of SiH2 , 1997 .

[23]  Jacek Klinowski,et al.  Taboo Search: An Approach to the Multiple Minima Problem , 1995, Science.

[24]  Timothy Clark,et al.  Efficient diffuse function‐augmented basis sets for anion calculations. III. The 3‐21+G basis set for first‐row elements, Li–F , 1983 .

[25]  J. D. Bernal,et al.  A Theory of Water and Ionic Solution, with Particular Reference to Hydrogen and Hydroxyl Ions , 1933 .

[26]  C. J. Tsai,et al.  Use of an eigenmode method to locate the stationary points on the potential energy surfaces of selected argon and water clusters , 1993 .

[27]  Howard R. Mayne,et al.  A study of genetic algorithm approaches to global geometry optimization of aromatic hydrocarbon microclusters , 1998 .

[28]  D. Neumark,et al.  Characterization of ArnCl(−) clusters (n=2–15) using zero electron kinetic energy and partially discriminated threshold photodetachment spectroscopy , 2001 .

[29]  H. Schaefer,et al.  Spectroscopic constants and potential energy surfaces for silanone (H2SiO), hydroxysilylene (HSiOH), the hydroxysilylene dimer, and the disilynyl radical (Si2H) , 1996 .

[30]  R. Kaiser,et al.  Infrared spectroscopic studies of hydrogenated silicon clusters Guiding the search for Si2Hx species in the Circumstellar Envelope of IRC+10216 , 2005 .

[31]  Seung Do Hong,et al.  Restricted random search method based on taboo search in the multiple minima problem , 1997 .

[32]  Visakan Kadirkamanathan,et al.  Stability analysis of the particle dynamics in particle swarm optimizer , 2006, IEEE Transactions on Evolutionary Computation.

[33]  Kari Laasonen,et al.  Ab initio molecular dynamics simulation of the solvation and transport of hydronium and hydroxyl ions in water , 1995 .

[34]  W. D. Allen,et al.  Anharmonic force field, vibrational energies, and barrier to inversion of SiH3− , 2000 .

[35]  C. Floudas,et al.  A global optimization approach for Lennard‐Jones microclusters , 1992 .

[36]  R. Hentschke,et al.  An improved genetic algorithm for global optimization and its application to sodium chloride clusters , 2002 .

[37]  T. Kitsopoulos,et al.  Reassignment of the Si−2 photodetachment spectra , 1993 .

[38]  M. Nimlos,et al.  The electronic states of Si2 and Si−2 as revealed by photoelectron spectroscopy , 1987 .

[39]  Sabre Kais,et al.  A new approach to global minimization , 1997 .

[40]  A. Sax,et al.  Stabilities and stationary points for singlet and triplet states of the Si2H− anion , 1993 .

[41]  Berry,et al.  Multiple phase coexistence in finite systems. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[42]  M. Iwamatsu,et al.  Structures of metallic clusters: Mono- and polyvalent metals , 2002 .

[43]  Lucjan Piela,et al.  Performance of the shift method of global minimization in searches for optimum structures of clusters of Lennard-Jones atoms , 1992 .

[44]  S. Goedecker Minima hopping: an efficient search method for the global minimum of the potential energy surface of complex molecular systems. , 2004, The Journal of chemical physics.

[45]  Jordi Mestres,et al.  Genetic algorithms: A robust scheme for geometry optimizations and global minimum structure problems , 1995, J. Comput. Chem..

[46]  Jonathan P. K. Doye,et al.  TOPICAL REVIEW: The effect of the range of the potential on the structure and stability of simple liquids: from clusters to bulk, from sodium to ? , 1996 .

[47]  W. D. Allen,et al.  Geometrical structures, force constants, and vibrational spectra of SiH, SiH2, SiH3, and SiH4 , 1986 .

[48]  Randall Q. Snurr,et al.  Ab Initio Stochastic Optimization of Conformational and Many-Body Degrees of Freedom , 2003, J. Chem. Inf. Comput. Sci..

[49]  Bernd Hartke,et al.  Global geometry optimization of (Ar)n and B(Ar)n clusters using a modified genetic algorithm , 1996 .

[50]  Lesley D. Lloyd,et al.  Modelling aluminium clusters with an empirical many-body potential , 1998 .

[51]  D. L. Freeman,et al.  Quantum Monte Carlo study of the thermodynamic properties of argon clusters: The homogeneous nucleation of argon in argon vapor and ‘‘magic number’’ distributions in argon vapor , 1985 .

[52]  F. Finocchi,et al.  Investigating bonding in small silicon-carbon clusters: exploration of the potential energy surfaces of Si3C4, Si4C3, and Si4C4 using ab initio molecular dynamics. , 2004, The Journal of chemical physics.

[53]  Kai Chen,et al.  Tribe-PSO: A novel global optimization algorithm and its application in molecular docking , 2006 .

[54]  J. Farges,et al.  Cluster models made of double icosahedron units , 1985 .

[55]  C. Chaudhuri,et al.  Infrared spectra and isomeric structures of hydroxide ion-water clusters OH- (H2O)1-5: a comparison with H3O (H2O)1-5 , 2001 .

[56]  J. Doye,et al.  Magic numbers and growth sequences of small face-centered-cubic and decahedral clusters , 1995 .

[57]  Jonathan P. K. Doye,et al.  On potential energy surfaces and relaxation to the global minimum , 1996 .

[58]  P. Davies,et al.  Infrared laser spectroscopy of the A 2Πu←X 2Σ+g system of the Si−2 anion , 1996 .

[59]  Russell C. Eberhart,et al.  Guest Editorial Special Issue on Particle Swarm Optimization , 2004, IEEE Trans. Evol. Comput..

[60]  M. Parrinello,et al.  The nature and transport mechanism of hydrated hydroxide ions in aqueous solution , 2002, Nature.

[61]  M. Hoare,et al.  Physical cluster mechanics: Statistical thermodynamics and nucleation theory for monatomic systems , 1975 .

[62]  Howard R. Mayne,et al.  Global geometry optimization of atomic clusters using a modified genetic algorithm in space‐fixed coordinates , 1996 .

[63]  Martin R. Saunders,et al.  Stochastic search for isomers on a quantum mechanical surface , 2004, J. Comput. Chem..

[64]  Michael J. Frisch,et al.  Self‐consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets , 1984 .

[65]  J. Doye,et al.  Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms , 1997, cond-mat/9803344.

[66]  J. Doll,et al.  Quantum annealing: A new method for minimizing multidimensional functions , 1994, chem-ph/9404003.

[67]  R. O. Jones Density functional study of carbon clusters C2n (2⩽n⩽16). I. Structure and bonding in the neutral clusters , 1999 .

[68]  D. Neumark,et al.  Photoelectron spectroscopy of SinH−(n=2–4) anions , 1998 .

[69]  C. Catlow,et al.  Structure and properties of ZnS nanoclusters. , 2005, The journal of physical chemistry. B.

[70]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[71]  Guoliang Xue Improvement on the northby algorithm for molecular conformation: Better solutions , 1994, J. Glob. Optim..

[72]  I. Dubois The absorption spectrum of the free SiH2 radical , 1968 .

[73]  N. Handy,et al.  Structure and properties of disilyne , 1993 .

[74]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[75]  C. Floudas,et al.  A deterministic global optimization approach for molecular structure determination , 1994 .

[76]  Sabre Kais,et al.  Pivot method for global optimization , 1997 .

[77]  Grubmüller,et al.  Predicting slow structural transitions in macromolecular systems: Conformational flooding. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[78]  D. Nelson,et al.  Polytetrahedral Order in Condensed Matter , 1989 .

[79]  M. Hoare,et al.  Physical cluster mechanics: Statics and energy surfaces for monatomic systems , 1971 .

[80]  L. Raff,et al.  Theoretical investigations of elementary processes in the chemical vapor deposition of silicon from silane. Unimolecular decomposition of SiH4 , 1984 .

[81]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[82]  J. Doye,et al.  Structural consequences of the range of the interatomic potential A menagerie of clusters , 1997, cond-mat/9709201.

[83]  T. Tada,et al.  Ab initio MO studies on disilane, germylsilane, and digermane radical anions as prototypes of polymer anions with silicon and germanium backbones , 1993 .

[84]  Andries Petrus Engelbrecht,et al.  A Cooperative approach to particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[85]  B. Jursic A B3LYP hybrid density functional theory study of structural properties, energies, and heats of formation for silicon–hydrogen compounds , 2000 .

[86]  J. Doye,et al.  The Structure and Stability of Atomic Liquids: From Clusters to Bulk , 1996, Science.

[87]  A. Sax,et al.  The electron affinities of Si2H2, Si2H3, and Si2H4 , 1992 .

[88]  Jijun Zhao,et al.  Genetic Algorithms for the Geometry Optimization of Atomic and Molecular Clusters , 2004 .

[89]  Thomas F. Coleman,et al.  A parallel build-up algorithm for global energy minimizations of molecular clusters using effective energy simulated annealing , 1993, J. Glob. Optim..

[90]  Haiyan Jiang,et al.  Parallel Random Tunneling Algorithm for Structural Optimization of Lennard-Jones Clusters up to N = 330 , 2004, J. Chem. Inf. Model..

[91]  J. Berkowitz Photoionization mass spectrometric studies of AsHn (n=1–3) , 1987 .

[92]  J. Straub,et al.  Approximate solution of the classical Liouville equation using Gaussian phase packet dynamics: Application to enhanced equilibrium averaging and global optimization , 1993 .

[93]  J. Doye,et al.  The effect of the range of the potential on the structures of clusters , 1995 .

[94]  H. Scheraga,et al.  Performance of the diffusion equation method in searches for optimum structures of clusters of Lennard-Jones atoms , 1991 .

[95]  P. Armentrout,et al.  Reaction of silicon ion (2P) with silane (SiH4, SiD4). Heats of formation of SiHn, SiHn+ (n = 1, 2, 3), and Si2Hn+ (n = 0, 1, 2, 3). Remarkable isotope exchange reaction involving four-hydrogen shifts , 1987 .

[96]  J. Doye,et al.  Surveying a potential energy surface by eigenvector-following , 1997 .

[97]  H. Matsuura,et al.  The microwave spectra of deuterated silanes: SiH3D, SiH2D2, and SiHD3 , 1985 .

[98]  W. Kutzelnigg Chemical Bonding in Higher Main Group Elements , 1984 .

[99]  B. Berg,et al.  Multicanonical algorithms for first order phase transitions , 1991 .

[100]  Julian Lee,et al.  Unbiased global optimization of Lennard-Jones clusters for N < or =201 using the conformational space annealing method. , 2003, Physical review letters.

[101]  P. Nandi,et al.  Ab initio SCF study of the nature of bonding in Si2H2 and Si2H4 , 1992 .

[102]  Andries Petrus Engelbrecht,et al.  A study of particle swarm optimization particle trajectories , 2006, Inf. Sci..

[103]  Jianpeng Ma,et al.  Simulated annealing using the classical density distribution , 1994 .

[104]  C. Brooks,et al.  Cluster structure determination using Gaussian density distribution global minimization methods , 1994 .

[105]  W. Jones,et al.  The pure-rotational Raman spectrum of disilane , 1973 .

[106]  F. Mota,et al.  Structure of the First Solvation Shell of the Hydroxide Anion. A Model Study Using OH-(H2O)n (n = 4, 5, 6, 7, 11, 17) Clusters , 1997 .

[107]  K. Re,et al.  Coexistence of multiple phases in finite systems. , 1993 .

[108]  L. Marks Surface structure and energetics of multiply twinned particles , 1984 .

[109]  L. Piela,et al.  Molecular Dynamics on Deformed Potential Energy Hypersurfaces , 1995 .

[110]  Frank H. Stillinger,et al.  Cluster optimization simplified by interaction modification , 1990 .

[111]  Xueguang Shao,et al.  Structural Distribution of Lennard-Jones Clusters Containing 562 to 1000 Atoms. , 2004, The journal of physical chemistry. A.

[112]  F. Stillinger,et al.  A strategy for finding classes of minima on a hypersurface: implications for approaches to the protein folding problem. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[113]  Xin Yang,et al.  Structure of the Na(x)Cl(x+1) (-) (x=1-4) clusters via ab initio genetic algorithm and photoelectron spectroscopy. , 2004, The Journal of chemical physics.

[114]  H. Schaefer,et al.  Electron Affinities of Silicon Hydrides: SiHn (n = 0−4) and Si2Hn (n = 0−6) , 2000 .

[115]  S. Gómez,et al.  Archimedean polyhedron structure yields a lower energy atomic cluster , 1996 .

[116]  Haiyan Jiang,et al.  An Efficient Method Based on Lattice Construction and the Genetic Algorithm for Optimization of Large Lennard-Jones Clusters. , 2004, The journal of physical chemistry. A.

[117]  E. Saitovitch,et al.  Structure and dynamic properties of neutral and ionized SiH5 and Si2H3 , 1997 .

[118]  I. Zilberberg,et al.  Paired Orbitals for Different Spins equations , 2008 .

[119]  G. Seifert,et al.  Scanning the potential energy surface of iron clusters: A novel search strategy , 2002 .

[120]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[121]  D. Dixon,et al.  Theoretical study of the heats of formation of small silicon-containing compounds , 1999 .

[122]  R. Bilodeau,et al.  SYSTEMATIC STUDY OF THE STABLE STATES OF C-, SI-, GE-, AND SN- VIA INFRARED LASER SPECTROSCOPY , 1998 .

[123]  Sabre Kais,et al.  Comparison study of pivot methods for global optimization , 1997 .

[124]  D. Neumark,et al.  Many‐body effects in weakly bound anion and neutral clusters: Zero electron kinetic energy spectroscopy and threshold photodetachment spectroscopy of ArnBr− (n=2–9) and ArnI− (n=2–19) , 1996 .

[125]  W. C. Lineberger,et al.  Laser photoelectron spectrometry of the negative ions of silicon and its hydrides , 1975 .

[126]  F. Stillinger,et al.  Nonlinear optimization simplified by hypersurface deformation , 1988 .

[127]  R. Kaiser,et al.  First infrared spectroscopic characterization of the disilyl (Si2H5) and d5-disilyl (Si2D5) radicals in low temperature silane matrices , 2004 .

[128]  P. Pieperhoff,et al.  Structure and spectroscopy of phosphorus cluster anions : theory (simulated annealing) and experiment (photoelectron detachment) , 1995 .

[129]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[130]  M. Nimlos,et al.  Photoelectron Spectroscopy of SiH3- and SiD3- , 1986 .

[131]  K. Raghavachari,et al.  Electronic structures of the negative ions Si−2 –Si−10: Electron affinities of small silicon clusters , 1991 .

[132]  J. Doye,et al.  Thermodynamics and the Global Optimization of Lennard-Jones clusters , 1998, cond-mat/9806020.

[133]  S. Pongor,et al.  A normalized root‐mean‐spuare distance for comparing protein three‐dimensional structures , 2001, Protein science : a publication of the Protein Society.

[134]  Mark A. Johnson,et al.  Spectroscopic Determination of the OH− Solvation Shell in the OH−·(H2O)n Clusters , 2003, Science.

[135]  L. Wille Minimum-energy configurations of atomic clusters: new results obtained by simulated annealing , 1987 .

[136]  R. Walsh,et al.  Some mechanistic problems in the kinetic modeling of monosilane pyrolysis , 1992 .