暂无分享,去创建一个
[1] Michel Coste,et al. Thom's Lemma, the Coding of Real Algebraic Numbers and the Computation of the Topology of Semi-Algebraic Sets , 1988, J. Symb. Comput..
[2] J. Calmet. Computer Algebra , 1982 .
[3] Tomás Recio,et al. Sturm-Habicht sequence , 1989, ISSAC '89.
[4] John F. Canny. Improved Algorithms for Sign Determination and Existential Quantifier Elimination , 1993, Comput. J..
[5] Renaud Rioboo. Towards faster real algebraic numbers , 2003, J. Symb. Comput..
[6] S. Basu,et al. Algorithms in real algebraic geometry , 2003 .
[7] Alkiviadis G. Akritas,et al. Elements of Computer Algebra with Applications , 1989 .
[8] Marie-Françoise Roy,et al. Complexity of the Computation on Real Algebraic Numbers , 1990, J. Symb. Comput..
[9] C. Yap,et al. Amortized Bound for Root Isolation via Sturm Sequences , 2007 .
[10] Wayne Eberly. Polynomial and Matrix Computations Volume 1: Fundamental Algorithms (Dario Bini and Victor Pan) , 1996, SIAM Rev..
[11] Lionel Ducos. Optimizations of the subresultant algorithm , 2000 .
[12] Laureano González-Vega,et al. An Improved Upper Complexity Bound for the Topology Computation of a Real Algebraic Plane Curve , 1996, J. Complex..
[13] S. R. Czapor,et al. Computer Algebra , 1983, Computing Supplementa.
[14] Bernard Mourrain,et al. SYNAPS: A library for symbolic-numeric computation , 2005 .
[15] Laureano González-Vega,et al. Efficient topology determination of implicitly defined algebraic plane curves , 2002, Comput. Aided Geom. Des..
[16] Fabrice Rouillier,et al. Bernstein's basis and real root isolation , 2004 .
[17] John H. Reif,et al. The complexity of elementary algebra and geometry , 1984, STOC '84.
[18] Leonidas J. Guibas,et al. A Computational Framework for Handling Motion , 2004, ALENEX/ANALC.
[19] Chee-Keng Yap,et al. Fundamental problems of algorithmic algebra , 1999 .
[20] George E. Collins,et al. Subresultants and Reduced Polynomial Remainder Sequences , 1967, JACM.
[21] J. T. Shwartz,et al. On the Piano Movers' Problem : III , 1983 .
[22] Maurice Mignotte,et al. Mathematics for computer algebra , 1991 .
[23] Jürgen Klose. Binary Segmentation for Multivariate Polynomials , 1995, J. Complex..
[24] Ioannis Z. Emiris,et al. Comparing Real Algebraic Numbers of Small Degree , 2004, ESA.
[25] M'hammed El Kahoui,et al. An elementary approach to subresultants theory , 2003, J. Symb. Comput..
[26] Marc Moreno Maza,et al. Polynomial Gcd Computations over Towers of Algebraic Extensions , 1995, AAECC.
[27] J. Schwartz,et al. On the “piano movers” problem. II. General techniques for computing topological properties of real algebraic manifolds , 1983 .
[28] Richard Zippel,et al. Effective polynomial computation , 1993, The Kluwer international series in engineering and computer science.
[29] Mohab Safey El Din,et al. New Structure Theorem for Subresultants , 2000, J. Symb. Comput..
[30] Michael N. Vrahatis,et al. On the Complexity of Isolating Real Roots and Computing with Certainty the Topological Degree , 2002, J. Complex..
[31] Joachim von zur Gathen,et al. Subresultants revisited , 2000, Theor. Comput. Sci..
[32] George E. Collins,et al. Cylindrical Algebraic Decomposition I: The Basic Algorithm , 1984, SIAM J. Comput..
[33] J. Davenport. A "Piano Movers" Problem. , 1986 .
[34] Keith O. Geddes,et al. Algorithms for computer algebra , 1992 .
[35] Kurt Mehlhorn,et al. A Descartes Algorithm for Polynomials with Bit-Stream Coefficients , 2005, CASC.
[36] G. E. Collins,et al. Real Zeros of Polynomials , 1983 .
[37] P. Zimmermann,et al. Efficient isolation of polynomial's real roots , 2004 .
[38] Ioannis Z. Emiris,et al. Real Solving of Bivariate Polynomial Systems , 2005, CASC.
[39] Laureano González-Vega,et al. Spécialisation de la suite de Sturm et sous-résulants , 1990, RAIRO Theor. Informatics Appl..
[40] Joachim von zur Gathen,et al. Modern Computer Algebra , 1998 .
[41] Takis Sakkalis. Signs of Algebraic Numbers , 1989, Computers and Mathematics.
[42] Daniel Reischert. Asymptotically fast computation of subresultants , 1997, ISSAC.
[43] Kurt Mehlhorn,et al. Effective Computational Geometry for Curves and Surfaces , 2005 .
[44] Thomas Lickteig,et al. Sylvester-Habicht Sequences and Fast Cauchy Index Computation , 2001, J. Symb. Comput..
[45] Volker Strassen,et al. The computational complexity of continued fractions , 1981, SYMSAC '81.
[46] 下山 武司. Cylindrical Algebraic Decomposition と実代数制約(数式処理における理論とその応用の研究) , 1995 .