Computations with one and two real algebraic numbers

We present algorithmic and complexity results concerning computations with one and two real algebraic numbers, as well as real solving of univariate polynomials and bivariate polynomial systems with integer coefficients using Sturm-Habicht sequences. Our main results, in the univariate case, concern the problems of real root isolation (Th. 19) and simultaneous inequalities (Cor.26) and in the bivariate, the problems of system real solving (Th.42), sign evaluation (Th. 37) and simultaneous inequalities (Cor. 43).

[1]  Michel Coste,et al.  Thom's Lemma, the Coding of Real Algebraic Numbers and the Computation of the Topology of Semi-Algebraic Sets , 1988, J. Symb. Comput..

[2]  J. Calmet Computer Algebra , 1982 .

[3]  Tomás Recio,et al.  Sturm-Habicht sequence , 1989, ISSAC '89.

[4]  John F. Canny Improved Algorithms for Sign Determination and Existential Quantifier Elimination , 1993, Comput. J..

[5]  Renaud Rioboo Towards faster real algebraic numbers , 2003, J. Symb. Comput..

[6]  S. Basu,et al.  Algorithms in real algebraic geometry , 2003 .

[7]  Alkiviadis G. Akritas,et al.  Elements of Computer Algebra with Applications , 1989 .

[8]  Marie-Françoise Roy,et al.  Complexity of the Computation on Real Algebraic Numbers , 1990, J. Symb. Comput..

[9]  C. Yap,et al.  Amortized Bound for Root Isolation via Sturm Sequences , 2007 .

[10]  Wayne Eberly Polynomial and Matrix Computations Volume 1: Fundamental Algorithms (Dario Bini and Victor Pan) , 1996, SIAM Rev..

[11]  Lionel Ducos Optimizations of the subresultant algorithm , 2000 .

[12]  Laureano González-Vega,et al.  An Improved Upper Complexity Bound for the Topology Computation of a Real Algebraic Plane Curve , 1996, J. Complex..

[13]  S. R. Czapor,et al.  Computer Algebra , 1983, Computing Supplementa.

[14]  Bernard Mourrain,et al.  SYNAPS: A library for symbolic-numeric computation , 2005 .

[15]  Laureano González-Vega,et al.  Efficient topology determination of implicitly defined algebraic plane curves , 2002, Comput. Aided Geom. Des..

[16]  Fabrice Rouillier,et al.  Bernstein's basis and real root isolation , 2004 .

[17]  John H. Reif,et al.  The complexity of elementary algebra and geometry , 1984, STOC '84.

[18]  Leonidas J. Guibas,et al.  A Computational Framework for Handling Motion , 2004, ALENEX/ANALC.

[19]  Chee-Keng Yap,et al.  Fundamental problems of algorithmic algebra , 1999 .

[20]  George E. Collins,et al.  Subresultants and Reduced Polynomial Remainder Sequences , 1967, JACM.

[21]  J. T. Shwartz,et al.  On the Piano Movers' Problem : III , 1983 .

[22]  Maurice Mignotte,et al.  Mathematics for computer algebra , 1991 .

[23]  Jürgen Klose Binary Segmentation for Multivariate Polynomials , 1995, J. Complex..

[24]  Ioannis Z. Emiris,et al.  Comparing Real Algebraic Numbers of Small Degree , 2004, ESA.

[25]  M'hammed El Kahoui,et al.  An elementary approach to subresultants theory , 2003, J. Symb. Comput..

[26]  Marc Moreno Maza,et al.  Polynomial Gcd Computations over Towers of Algebraic Extensions , 1995, AAECC.

[27]  J. Schwartz,et al.  On the “piano movers” problem. II. General techniques for computing topological properties of real algebraic manifolds , 1983 .

[28]  Richard Zippel,et al.  Effective polynomial computation , 1993, The Kluwer international series in engineering and computer science.

[29]  Mohab Safey El Din,et al.  New Structure Theorem for Subresultants , 2000, J. Symb. Comput..

[30]  Michael N. Vrahatis,et al.  On the Complexity of Isolating Real Roots and Computing with Certainty the Topological Degree , 2002, J. Complex..

[31]  Joachim von zur Gathen,et al.  Subresultants revisited , 2000, Theor. Comput. Sci..

[32]  George E. Collins,et al.  Cylindrical Algebraic Decomposition I: The Basic Algorithm , 1984, SIAM J. Comput..

[33]  J. Davenport A "Piano Movers" Problem. , 1986 .

[34]  Keith O. Geddes,et al.  Algorithms for computer algebra , 1992 .

[35]  Kurt Mehlhorn,et al.  A Descartes Algorithm for Polynomials with Bit-Stream Coefficients , 2005, CASC.

[36]  G. E. Collins,et al.  Real Zeros of Polynomials , 1983 .

[37]  P. Zimmermann,et al.  Efficient isolation of polynomial's real roots , 2004 .

[38]  Ioannis Z. Emiris,et al.  Real Solving of Bivariate Polynomial Systems , 2005, CASC.

[39]  Laureano González-Vega,et al.  Spécialisation de la suite de Sturm et sous-résulants , 1990, RAIRO Theor. Informatics Appl..

[40]  Joachim von zur Gathen,et al.  Modern Computer Algebra , 1998 .

[41]  Takis Sakkalis Signs of Algebraic Numbers , 1989, Computers and Mathematics.

[42]  Daniel Reischert Asymptotically fast computation of subresultants , 1997, ISSAC.

[43]  Kurt Mehlhorn,et al.  Effective Computational Geometry for Curves and Surfaces , 2005 .

[44]  Thomas Lickteig,et al.  Sylvester-Habicht Sequences and Fast Cauchy Index Computation , 2001, J. Symb. Comput..

[45]  Volker Strassen,et al.  The computational complexity of continued fractions , 1981, SYMSAC '81.

[46]  下山 武司 Cylindrical Algebraic Decomposition と実代数制約(数式処理における理論とその応用の研究) , 1995 .