Global Attractor for 1D Dirac Field Coupled to Nonlinear Oscillator

[1]  D. Yafaev A point interaction for the discrete Schrödinger operator and generalized Chebyshev polynomials , 2017, 1703.06624.

[2]  E. Kopylova On global attraction to solitary waves for the Klein–Gordon equation with concentrated nonlinearity , 2016, 1611.09882.

[3]  E. Kopylova On Global Attraction to Stationary States for Wave Equations with Concentrated Nonlinearities , 2016, Journal of dynamics and differential equations.

[4]  Riccardo Adami,et al.  Orbital and asymptotic stability for standing waves of a nonlinear Schrödinger equation with concentrated nonlinearity in dimension three , 2012, 1207.5677.

[5]  Alexander Komech,et al.  Global Attraction to Solitary Waves for a Nonlinear Dirac Equation with Mean Field Interaction , 2010, SIAM J. Math. Anal..

[6]  A. Komech,et al.  Global attraction to solitary waves for Klein-Gordon equation with mean field interaction , 2007, 0708.1131.

[7]  A. Komech,et al.  On global attraction to solitary waves for the Klein-Gordon field coupled to several nonlinear oscillators , 2007, math/0702660.

[8]  V.Buslaev,et al.  On Asymptotic Stability of Solitary Waves in a Nonlinear Schr\"odinger Equation , 2007, math-ph/0702013.

[9]  Eric Poisson,et al.  Dynamics of Charged Particles and their Radiation Field , 2006 .

[10]  A. Komech,et al.  Global Attractor for a Nonlinear Oscillator Coupled to the Klein–Gordon Field , 2006, math/0609013.

[11]  S. Cuccagna Stabilization of solutions to nonlinear Schrödinger equations , 2001 .

[12]  H. Spohn,et al.  Long—time asymptotics for the coupled maxwell—lorentz equations , 2000 .

[13]  A. Komech On Transitions to Stationary States in One‐Dimensional Nonlinear Wave Equations , 1999 .

[14]  E. Zeidler,et al.  The Relativistic Dynamics of the Combined Particle–Field System in Renormalized Classical Electrodynamics , 1998 .

[15]  A. Soffer,et al.  Resonances, radiation damping and instabilitym in Hamiltonian nonlinear wave equations , 1998, chao-dyn/9807003.

[16]  M. Kunze,et al.  Long-time asymptotics for a classical particle interacting with a scalar wave field , 1997 .

[17]  Alexander Komech,et al.  On asymptotic stability of stationary solutions to nonlinear wave and Klein-Gordon equations , 1996 .

[18]  A. Komech On Stabilization of String-Nonlinear Oscillator Interaction , 1995 .

[19]  A. Soffer,et al.  Multichannel nonlinear scattering for nonintegrable equations II. The case of anisotropic potentials and data , 1992 .

[20]  D. Yafaev On a zero-range interaction of a quantum particle with the vacuum , 1992 .

[21]  Michael I. Weinstein,et al.  Multichannel nonlinear scattering for nonintegrable equations , 1990 .

[22]  L. Hörmander The fully non-linear Cauchy problem with small data , 1989 .

[23]  Sergiu Klainerman,et al.  Long-time behavior of solutions to nonlinear evolution equations , 1982 .

[24]  Walter A. Strauss,et al.  Decay and asymptotics for □u = F(u)☆ , 1968 .

[25]  F. Cornish Classical radiation theory and point charges , 1965 .

[26]  Y. Zel’dovich SCATTERING BY A SINGULAR POTENTIAL IN PERTURBATION THEORY AND IN THE MOMENTUM REPRESENTATION , 1960 .

[27]  Paul Adrien Maurice Dirac,et al.  Classical theory of radiating electrons , 1938 .

[28]  R. Figari,et al.  Quantum fields and point interactions. , 2018 .

[29]  G. Perelman Asymptotic stability of solitary waves for nonlinear Schrödinger equations , 2003 .

[30]  Vladimir S. Buslaev,et al.  On the stability of solitary waves for nonlinear Schr?odinger equations , 1995 .

[31]  L. Hörmander On the Fully Non-Linear Cauchy Problem with Small Data. II. , 1991 .

[32]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[33]  W. Strauss,et al.  Decay and scattering of solutions of a nonlinear relativistic wave equation , 1972 .