Thermal conductivity of diamond nanowires from first principles
暂无分享,去创建一个
Natalio Mingo | Nebil A. Katcho | Lucas Lindsay | David Broido | Wu Li | Wu Li | N. Mingo | D. Broido | D. Stewart | L. Lindsay | N. A. Katcho | Derek A. Stewart
[1] O. Lebedev,et al. Hybrid Diamond‐Graphite Nanowires Produced by Microwave Plasma Chemical Vapor Deposition , 2007 .
[2] N. Mingo,et al. Role of light and heavy embedded nanoparticles on the thermal conductivity of SiGe alloys , 2011, 1108.6137.
[3] S. Cloutier,et al. Synthesis of diamond nanowires using atmospheric-pressure chemical vapor deposition. , 2010, Nano letters.
[4] Conductance of metallic carbon nanotubes dipped into metal , 2001, cond-mat/0110218.
[5] Gernot Deinzer,et al. Ab initio calculation of the linewidth of various phonon modes in germanium and silicon , 2003 .
[6] A. Henry,et al. On the importance of optical phonons to thermal conductivity in nanostructures , 2011 .
[7] M. G. Holland. Analysis of Lattice Thermal Conductivity , 1963 .
[8] Amelia Carolina Sparavigna,et al. Beyond the isotropic-model approximation in the theory of thermal conductivity. , 1996, Physical review. B, Condensed matter.
[9] Gernot Deinzer,et al. Ab initio theory of the lattice thermal conductivity in diamond , 2009 .
[10] R. Melnik,et al. Geometry and temperature dependent thermal conductivity of diamond nanowires: A non-equilibrium molecular dynamics study , 2010 .
[11] D. Brenner,et al. Thermal conductivity of diamond nanorods: Molecular simulation and scaling relations. , 2006, Nano letters.
[12] Amelia Carolina Sparavigna,et al. Heat transport in dielectric solids with diamond structure , 1997 .
[13] Heat conductance is strongly anisotropic for pristine silicon nanowires. , 2008, Nano letters.
[14] E. Pop,et al. Reduced thermal conductivity in nanoengineered rough Ge and GaAs nanowires. , 2010, Nano letters.
[15] D. R. Hamann,et al. Pseudopotentials that work: From H to Pu , 1982 .
[16] E. Ōsawa,et al. Vertically aligned nanowires from boron-doped diamond. , 2008, Nano letters.
[17] Arun Majumdar,et al. Thermal conductance of thin silicon nanowires. , 2008, Physical review letters.
[18] Humphrey J. Maris,et al. Anisotropic Heat Conduction in Cubic Crystals in the Boundary Scattering Regime , 1970 .
[19] D. Vanderbilt,et al. Spectral and Fermi surface properties from Wannier interpolation , 2007, cond-mat/0702554.
[20] J. Gong,et al. Diamond Nanorods from Carbon Nanotubes , 2004 .
[21] N. Mingo,et al. Intrinsic lattice thermal conductivity of semiconductors from first principles , 2007 .
[22] A. Majumdar,et al. Monte Carlo Simulation of Silicon Nanowire Thermal Conductivity , 2005 .
[23] J. Ziman,et al. In: Electrons and Phonons , 1961 .
[24] A. Fujishima,et al. Synthesis of Well‐Aligned Diamond Nanocylinders , 2001 .
[25] Madhu Menon,et al. Thermal conductivity in thin silicon nanowires: phonon confinement effect. , 2007, Nano letters.
[26] N. Mingo,et al. Absence of Casimir regime in two-dimensional nanoribbon phonon conduction , 2011, 1810.10681.
[27] E. Pop,et al. Impact of phonon-surface roughness scattering on thermal conductivity of thin si nanowires. , 2009, Physical review letters.
[28] N. Mingo. Calculation of Si nanowire thermal conductivity using complete phonon dispersion relations , 2003 .
[29] Yiying Wu,et al. Thermal conductivity of individual silicon nanowires , 2003 .
[30] R. Peierls,et al. Quantum theory of solids , 1956 .
[31] Jian-Sheng Wang,et al. Molecular dynamics simulation for heat transport in thin diamond nanowires , 2011, 1108.5812.
[32] A. Majumdar,et al. Predicting the thermal conductivity of Si and Ge nanowires , 2003 .
[33] D. Frankl,et al. Thermal Conductivity of Silicon in the Boundary Scattering Regime , 1969 .
[34] Giulia Galli,et al. Atomistic simulations of heat transport in silicon nanowires. , 2009, Physical review letters.
[35] J. F. Moreland,et al. THE DISPARATE THERMAL CONDUCTIVITY OF CARBON NANOTUBES AND DIAMOND NANOWIRES STUDIED BY ATOMISTIC SIMULATION , 2004 .
[36] Jianjun Dong,et al. Lattice thermal conductivity of MgO at conditions of Earth’s interior , 2010, Proceedings of the National Academy of Sciences.
[37] N. Mingo,et al. Diameter dependence of carbon nanotube thermal conductivity and extension to the graphene limit , 2010 .
[38] A. Zakharov,et al. Self-assembled growth, microstructure, and field-emission high-performance of ultrathin diamond nanorods. , 2009, ACS nano.