Thermal conductivity of diamond nanowires from first principles

Usingab initiocalculations we have investigated the thermal conductivity (κ) of diamond nanowires, unveiling unusual features unique to this system. In sharp contrast with Si, κ(T) of diamond nanowires as thick as 400 nm still increase monotonically with temperature up to 300 K, and room-temperature size effects are stronger than for Si. A marked dependence of κ on the crystallographic orientation is predicted, which is apparent even at room temperature. [001] growth direction always possesses the largest κ in diamond nanowires. The predicted features point to a potential use of diamond nanowires for the precise control of thermal flow in nanoscale devices.

[1]  O. Lebedev,et al.  Hybrid Diamond‐Graphite Nanowires Produced by Microwave Plasma Chemical Vapor Deposition , 2007 .

[2]  N. Mingo,et al.  Role of light and heavy embedded nanoparticles on the thermal conductivity of SiGe alloys , 2011, 1108.6137.

[3]  S. Cloutier,et al.  Synthesis of diamond nanowires using atmospheric-pressure chemical vapor deposition. , 2010, Nano letters.

[4]  Conductance of metallic carbon nanotubes dipped into metal , 2001, cond-mat/0110218.

[5]  Gernot Deinzer,et al.  Ab initio calculation of the linewidth of various phonon modes in germanium and silicon , 2003 .

[6]  A. Henry,et al.  On the importance of optical phonons to thermal conductivity in nanostructures , 2011 .

[7]  M. G. Holland Analysis of Lattice Thermal Conductivity , 1963 .

[8]  Amelia Carolina Sparavigna,et al.  Beyond the isotropic-model approximation in the theory of thermal conductivity. , 1996, Physical review. B, Condensed matter.

[9]  Gernot Deinzer,et al.  Ab initio theory of the lattice thermal conductivity in diamond , 2009 .

[10]  R. Melnik,et al.  Geometry and temperature dependent thermal conductivity of diamond nanowires: A non-equilibrium molecular dynamics study , 2010 .

[11]  D. Brenner,et al.  Thermal conductivity of diamond nanorods: Molecular simulation and scaling relations. , 2006, Nano letters.

[12]  Amelia Carolina Sparavigna,et al.  Heat transport in dielectric solids with diamond structure , 1997 .

[13]  Heat conductance is strongly anisotropic for pristine silicon nanowires. , 2008, Nano letters.

[14]  E. Pop,et al.  Reduced thermal conductivity in nanoengineered rough Ge and GaAs nanowires. , 2010, Nano letters.

[15]  D. R. Hamann,et al.  Pseudopotentials that work: From H to Pu , 1982 .

[16]  E. Ōsawa,et al.  Vertically aligned nanowires from boron-doped diamond. , 2008, Nano letters.

[17]  Arun Majumdar,et al.  Thermal conductance of thin silicon nanowires. , 2008, Physical review letters.

[18]  Humphrey J. Maris,et al.  Anisotropic Heat Conduction in Cubic Crystals in the Boundary Scattering Regime , 1970 .

[19]  D. Vanderbilt,et al.  Spectral and Fermi surface properties from Wannier interpolation , 2007, cond-mat/0702554.

[20]  J. Gong,et al.  Diamond Nanorods from Carbon Nanotubes , 2004 .

[21]  N. Mingo,et al.  Intrinsic lattice thermal conductivity of semiconductors from first principles , 2007 .

[22]  A. Majumdar,et al.  Monte Carlo Simulation of Silicon Nanowire Thermal Conductivity , 2005 .

[23]  J. Ziman,et al.  In: Electrons and Phonons , 1961 .

[24]  A. Fujishima,et al.  Synthesis of Well‐Aligned Diamond Nanocylinders , 2001 .

[25]  Madhu Menon,et al.  Thermal conductivity in thin silicon nanowires: phonon confinement effect. , 2007, Nano letters.

[26]  N. Mingo,et al.  Absence of Casimir regime in two-dimensional nanoribbon phonon conduction , 2011, 1810.10681.

[27]  E. Pop,et al.  Impact of phonon-surface roughness scattering on thermal conductivity of thin si nanowires. , 2009, Physical review letters.

[28]  N. Mingo Calculation of Si nanowire thermal conductivity using complete phonon dispersion relations , 2003 .

[29]  Yiying Wu,et al.  Thermal conductivity of individual silicon nanowires , 2003 .

[30]  R. Peierls,et al.  Quantum theory of solids , 1956 .

[31]  Jian-Sheng Wang,et al.  Molecular dynamics simulation for heat transport in thin diamond nanowires , 2011, 1108.5812.

[32]  A. Majumdar,et al.  Predicting the thermal conductivity of Si and Ge nanowires , 2003 .

[33]  D. Frankl,et al.  Thermal Conductivity of Silicon in the Boundary Scattering Regime , 1969 .

[34]  Giulia Galli,et al.  Atomistic simulations of heat transport in silicon nanowires. , 2009, Physical review letters.

[35]  J. F. Moreland,et al.  THE DISPARATE THERMAL CONDUCTIVITY OF CARBON NANOTUBES AND DIAMOND NANOWIRES STUDIED BY ATOMISTIC SIMULATION , 2004 .

[36]  Jianjun Dong,et al.  Lattice thermal conductivity of MgO at conditions of Earth’s interior , 2010, Proceedings of the National Academy of Sciences.

[37]  N. Mingo,et al.  Diameter dependence of carbon nanotube thermal conductivity and extension to the graphene limit , 2010 .

[38]  A. Zakharov,et al.  Self-assembled growth, microstructure, and field-emission high-performance of ultrathin diamond nanorods. , 2009, ACS nano.