Time-domain simulation of a slack-moored floating oscillating water column and validation with physical model tests

Abstract The development of devices for extracting wave energy from the ocean is largely supported by numerical models, as they allow the simulation of different configurations without the large costs of tank testing. From the different available options, time-domain models offer a very good combination between accuracy, flexibility and computational time. They allow the incorporation of non-linearities from power take-off systems, mooring lines, sophisticated control techniques and other relevant hydrodynamic effects. In this paper, we present a time-domain model to simulate the dynamics and power performance of a slack-moored Spar-buoy OWC (Oscillating Water Column) wave energy converter. The model considers linear hydrodynamics, mean drift forces, viscous drag effects and air compressibility inside the OWC chamber. The mooring system is simulated using a quasi-static approach. The floating structure is defined as a rigid body with six degrees of freedom, whereas the OWC free surface is assumed flat. The converter motion and power extraction from regular and irregular wave simulations are compared with experimental results from small-scale model tests in a wave channel. Numerical results show good agreement with experimental data except when parametric resonance is observed and near the channel cut-off frequencies.

[1]  Robert G. Dean,et al.  Water wave mechanics for engineers and scientists , 1983 .

[2]  T. Sarpkaya,et al.  Mechanics of wave forces on offshore structures , 1981 .

[3]  Florent Trarieux,et al.  A time-domain simulator for an oscillating water column in irregular waves at model scale , 2011 .

[4]  Adi Kurniawan,et al.  Wave energy devices with compressible volumes , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[5]  Xin Liu,et al.  Numerical simulation of a heave-only floating OWC (oscillating water column) device , 2014 .

[6]  John V. Ringwood,et al.  A Compact 6-DoF Nonlinear Wave Energy Device Model for Power Assessment and Control Investigations , 2019, IEEE Transactions on Sustainable Energy.

[7]  Michael E. McCormick,et al.  Experiences in Pneumatic Wave Energy Conversion in Japan , 1987 .

[8]  Julia Fernandez Chozas,et al.  Performance Evaluation of an Axysimmetric Floating OWC , 2010 .

[9]  Yukihisa Washio,et al.  The Open Sea Tests of the Offshore Floating Type Wave Power Device “Mighty Whale”: Performance of the Prototype , 2002 .

[10]  John Ringwood,et al.  Mathematical modelling of wave energy converters: A review of nonlinear approaches , 2017 .

[11]  Odd M. Faltinsen,et al.  Sea loads on ships and offshore structures , 1990 .

[12]  G. Macfarlane,et al.  Experimental and numerical investigations on the hydrodynamic performance of a floating-moored oscillating water column wave energy converter , 2017 .

[13]  Luís M.C. Gato,et al.  Dynamics of arrays of floating point-absorber wave energy converters with inter-body and bottom slack-mooring connections , 2009 .

[14]  Ronald W. Yeung,et al.  Wave-interference effects on a truncated cylinder in a channel , 1989 .

[15]  Bastien Chopard,et al.  Virtual wave flume and Oscillating Water Column modeled by lattice Boltzmann method and comparison with experimental data , 2016 .

[16]  John V. Ringwood,et al.  Analytical Formulation of Nonlinear Froude-Krylov Forces for Surging-Heaving-Pitching Point Absorbers , 2018, Volume 10: Ocean Renewable Energy.

[17]  Yoshimi Goda,et al.  Random Seas and Design of Maritime Structures , 1985 .

[18]  António Sarmento,et al.  Wave generation by an oscillating surface-pressure and its application in wave-energy extraction , 1985, Journal of Fluid Mechanics.

[19]  Leo H. Holthuijsen,et al.  Waves in Oceanic and Coastal Waters , 2007 .

[20]  M. Longuet-Higgins The statistical analysis of a random, moving surface , 1957, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[21]  Gregor Macfarlane,et al.  Experimental and numerical investigations on the intact and damage survivability of a floating–moored oscillating water column device , 2017 .

[22]  João C.C. Henriques,et al.  Oscillating-water-column wave energy converters and air turbines: A review , 2016 .

[23]  João C.C. Henriques,et al.  Model-prototype similarity of oscillating-water-column wave energy converters , 2014 .

[24]  John Ringwood,et al.  Nonlinear Froude-Krylov and viscous drag representations for wave energy converters in the computation/fidelity continuum , 2017 .

[25]  D. V. Evans,et al.  Wave-power absorption by systems of oscillating surface pressure distributions , 1982, Journal of Fluid Mechanics.

[26]  Makoto Iida,et al.  Effect of inclination on oscillation characteristics of an oscillating water column wave energy converter , 2016 .

[27]  Paolo Boccotti,et al.  On a new wave energy absorber , 2003 .

[28]  Craig Meskell,et al.  Investigation on Parametrically Excited Motions of Point Absorbers in Regular Waves , 2014 .

[29]  A.F.O. Falcão,et al.  8.05 – Air Turbines , 2012 .

[30]  Corrado Altomare,et al.  Towards simulating floating offshore oscillating water column converters with Smoothed Particle Hydrodynamics , 2017 .

[31]  J. R. Morison,et al.  The Force Exerted by Surface Waves on Piles , 1950 .

[32]  Bin Teng,et al.  Investigation of hydrodynamic performance of an OWC (oscillating water column) wave energy device using a fully nonlinear HOBEM (higher-order boundary element method) , 2015 .

[33]  A. Reitan,et al.  Development of the Kvaerner Multiresonant OWC , 1986 .

[34]  Marcelo A. S. Neves,et al.  Nonlinear Instabilities of Spar Platforms in Waves , 2012 .

[35]  Javier L. Lara,et al.  Validation of OpenFOAM® for Oscillating Water Column three-dimensional modeling , 2015 .

[36]  J. N. Newman,et al.  Computation Of Wave Effects Using ThePanel Method , 2005 .

[37]  R.P.F. Gomes,et al.  Wave power extraction of a heaving floating oscillating water column in a wave channel , 2016 .

[38]  F. A. McPeake,et al.  Design Optimization of Axi-symmetric Tail Tube Buoys , 1986 .

[39]  Felice Arena,et al.  On Design and Building of a U-OWC Wave Energy Converter in the Mediterranean Sea: A Case Study , 2013 .

[40]  A. F. de O. Falcão,et al.  Stochastic modelling of OWC wave power plant performance , 2002 .

[41]  Wanan Sheng,et al.  Experimental Studies of a Floating Cylindrical OWC WEC , 2012 .

[42]  Gregor Macfarlane,et al.  Experimental and numerical measurements of wave forces on a 3D offshore stationary OWC wave energy converter , 2017 .

[43]  Felice Arena,et al.  Analytical modelling of an U-Oscillating Water Column and performance in random waves , 2013 .

[44]  Kyoung-Rok Lee,et al.  Fully nonlinear time-domain simulation of a backward bent duct buoy floating wave energy converter using an acceleration potential method , 2013 .

[45]  John Ringwood,et al.  Comparison of the Experimental and Numerical Results of Modelling a 32-Oscillating Water Column (OWC), V-Shaped Floating Wave Energy Converter , 2013 .

[46]  Paulo Roberto de Freitas Teixeira,et al.  Numerical simulation of an oscillating water column device using a code based on Navier–Stokes equations , 2013 .

[47]  J. N. Newman,et al.  Computation of wave effects using the panel method , 2003 .

[48]  V. Heller,et al.  8.04 – Development of Wave Devices from Initial Conception to Commercial Demonstration , 2012 .

[49]  João C.C. Henriques,et al.  Dynamics and optimization of the OWC spar buoy wave energy converter , 2012 .

[50]  D. V. Evans,et al.  A submerged cylinder wave energy converter with internal sloshing power take off , 2014 .

[51]  Hyun Soo Shin,et al.  A Study On Mathieu-type Instability of Conventional Spar Platform In Regular Waves , 2005 .

[52]  Aurélien Babarit,et al.  Potential Time Domain Model with Viscous Correction and CFD Analysis of a Generic Surging Floating Wave Energy Converter , 2015 .

[53]  Irene Simonetti,et al.  Optimization of the geometry and the turbine induced damping for fixed detached and asymmetric OWC devices: A numerical study , 2017 .

[54]  Richard Manasseh,et al.  Behaviour of eigenmodes of an array of oscillating water column devices , 2017 .

[55]  A. Falcão,et al.  The spring-like air compressibility effect in oscillating-water-column wave energy converters: Review and analyses , 2019, Renewable and Sustainable Energy Reviews.

[56]  Paulo Alexandre Justino,et al.  OWC wave energy devices with air flow control , 1999 .

[57]  A. J. N. A. Sarmento,et al.  Wave flume experiments on two-dimensional oscillating water column wave energy devices , 1992 .

[58]  Qingping Zou,et al.  Air–water two-phase flow modelling of hydrodynamic performance of an oscillating water column device , 2012 .

[59]  A.J.N.A. Sarmento,et al.  Model-Test Optimization Of An Owc Wave Power Plant , 1993 .

[60]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[61]  Michael E. McCormick Analysis of a Wave Energy Conversion Buoy , 1974 .

[62]  R.P.F. Gomes,et al.  Hydrodynamic optimization of an axisymmetric floating oscillating water column for wave energy conversion , 2012 .

[63]  W. Cummins THE IMPULSE RESPONSE FUNCTION AND SHIP MOTIONS , 2010 .

[64]  R.P.F. Gomes,et al.  Design of oscillating-water-column wave energy converters with an application to self-powered sensor buoys , 2016 .

[65]  Kim Nielsen,et al.  Hydrodynamic analysis of oscillating water column wave energy devices , 2015, Journal of Ocean Engineering and Marine Energy.

[66]  G. Kelly,et al.  Development of a free heaving OWC model with non-linear PTO interaction , 2018 .

[67]  John Ringwood,et al.  Articulating parametric resonance for an OWC spar buoy in regular and irregular waves , 2018, Journal of Ocean Engineering and Marine Energy.

[68]  Subrata Kumar Chakrabarti,et al.  Offshore Structure Modeling , 1994 .

[69]  Y. Torre-Enciso,et al.  Mutriku Wave Power Plant : from the thinking out to the reality , 2009 .

[70]  Inigo J. Losada,et al.  Time-domain modeling of a fixed detached oscillating water column towards a floating multi-chamber device , 2014 .

[71]  D. Konispoliatis,et al.  Hydrodynamic analysis of an array of interacting free-floating oscillating water column (OWC׳s) devices , 2016 .

[72]  V. Jayashankar,et al.  Development of Backward Bent Duct Buoy (BBDB) , 1999 .

[73]  Aurélien Babarit,et al.  A database of capture width ratio of wave energy converters , 2015 .

[74]  Luís Eça,et al.  Viscous flow simulations at high Reynolds numbers without wall functions: Is y+≃1 enough for the near-wall cells? , 2018 .

[75]  John Ringwood,et al.  Computationally efficient nonlinear Froude–Krylov force calculations for heaving axisymmetric wave energy point absorbers , 2017 .

[76]  John Ringwood,et al.  Analytical representation of nonlinear Froude-Krylov forces for 3-DoF point absorbing wave energy devices , 2018, Ocean Engineering.

[77]  Bradley J. Buckham,et al.  Wave-to-wire simulation of a floating oscillating water column wave energy converter , 2016 .

[78]  Yoshio Masuda,et al.  An Experience of Wave Power Generator through Tests and Improvement , 1986 .