An accurate numerical inversionof Laplace transforms based on the location of their poles

We introduce an efficient and easily implemented numerical method for the inversion of Laplace transforms, using the analytic continuation of integrands of Bromwich's integrals. After deforming the Bromwich's contours so that it consists of the union of small circles around singular points, we evaluate the Bromwich's integrals by quadrature rules. We prove that the error bound of our method has spectral accuracy of type @?^N + eps/@?^P, 0 < @? < 1 and provide several numerical examples.

[1]  Almerico Murli,et al.  Algorithm 682: Talbot's method of the Laplace inversion problems , 1990, TOMS.

[2]  J. N. Lyness,et al.  A modification of the weeks method for numerical inversion of the Laplace transform , 1986 .

[3]  David A. Smith,et al.  Numerical Comparisons of Nonlinear Convergence Accelerators , 1982 .

[4]  J. A. C. Weideman,et al.  Algorithms for Parameter Selection in the Weeks Method for Inverting the Laplace Transform , 1999, SIAM J. Sci. Comput..

[5]  P. Kythe,et al.  Computational Methods for Linear Integral Equations , 2002 .

[6]  Dean G. Duffy,et al.  On the numerical inversion of Laplace transforms: comparison of three new methods on characteristic problems from applications , 1993, TOMS.

[7]  Giulio Giunta,et al.  More on the weeks method for the numerical inversion of the Laplace transform , 1988 .

[8]  William T. Weeks,et al.  Numerical Inversion of Laplace Transforms Using Laguerre Functions , 1966, JACM.

[9]  L. Ahlfors Complex Analysis , 1979 .

[10]  Brian Davies,et al.  Integral transforms and their applications , 1978 .

[11]  A. Talbot The Accurate Numerical Inversion of Laplace Transforms , 1979 .

[12]  Dongwoo Sheen,et al.  A parallel method for time-discretization of parabolic problems based on contour integral representation and quadrature , 2000, Math. Comput..

[13]  Amnon Pazy,et al.  Semigroups of Linear Operators and Applications to Partial Differential Equations , 1992, Applied Mathematical Sciences.

[14]  Dongwoo Sheen,et al.  A parallel method for time discretization of parabolic equations based on Laplace transformation and quadrature , 2003 .

[15]  Marc Van Barel,et al.  Computing the Zeros of Analytic Functions , 2000 .

[16]  Kenny S. Crump,et al.  Numerical Inversion of Laplace Transforms Using a Fourier Series Approximation , 1976, J. ACM.

[17]  J. Stoer,et al.  Introduction to Numerical Analysis , 2002 .

[18]  B. Davies,et al.  Numerical Inversion of the Laplace Transform: A Survey and Comparison of Methods , 1979 .

[19]  David Levin,et al.  Development of non-linear transformations for improving convergence of sequences , 1972 .