Body Lice and Head Lice (Anoplura: Pediculidae) Have the Smallest Genomes of Any Hemimetabolous Insect Reported to Date

Abstract The human body louse, Pediculus humanus humanus L. (Anoplura: Pediculidae), is a vector of several diseases, including louse-borne epidemic typhus, relapsing fever, and trench fever, whereas the head louse, Pediculus humanus capitis De Geer (Anoplura: Pediculidae), is more a pest of social concern. Sequencing of the body louse genome has recently been proposed and undertaken by National Human Genome Research Institute. One of the first steps in understanding an organism’s genome is to determine its genome size. Here, using flow cytometry determinations, we present evidence that body louse genome size is 104.7 ± 1.4 Mb for females and 108.3 ± 1.1 Mb for males. Our results suggest that head lice also have a small genome size, of similar size to the body louse. Thus, Pediculus lice have one of the smallest genome sizes known in insects, suggesting it may be a suitable choice as a minimal hemimetabolous genome.

[1]  P. Bork,et al.  Prediction of effective genome size in metagenomic samples , 2007, Genome Biology.

[2]  J. Edman,et al.  An improved in vitro rearing system for the human head louse allows the determination of resistance to formulated pediculicides , 2006 .

[3]  J. Johnston,et al.  Sequencing of a New Target Genome: the Pediculus humanus humanus (Phthiraptera: Pediculidae) Genome Project , 2006, Journal of medical entomology.

[4]  Ying Wang,et al.  Insights into social insects from the genome of the honeybee Apis mellifera , 2006, Nature.

[5]  The Chinese Human Genome Sequencing Consortium Insights into social insects from the genome of the honeybee Apis mellifera , 2006 .

[6]  R. Gregory The evolution of the genome , 2005 .

[7]  N. Leo,et al.  Unravelling the evolution of the head lice and body lice of humans , 2005, Parasitology Research.

[8]  T. Gregory Genome Size Evolution in Animals , 2005 .

[9]  D. Kapraun,et al.  Nuclear DNA content estimates in multicellular green, red and brown algae: phylogenetic considerations. , 2005, Annals of botany.

[10]  J. Johnston,et al.  Tiny genomes and endoreduplication in Strepsiptera , 2004, Insect molecular biology.

[11]  J. Edman,et al.  Resistance and cross-resistance to insecticides in human head lice from Florida and California , 2004 .

[12]  P. Dhar,et al.  Genome reduction in prokaryotic obligatory intracellular parasites of humans: a comparative analysis. , 2004, International journal of systematic and evolutionary microbiology.

[13]  A. Rogers,et al.  Genetic Analysis of Lice Supports Direct Contact between Modern and Archaic Humans , 2004, PLoS biology.

[14]  T. Gregory Genome size and developmental complexity , 2002, Genetica.

[15]  I. Burgess Human lice and their control. , 2004, Annual review of entomology.

[16]  J. Edman,et al.  In Vivo and In Vitro Rearing of Pediculus humanus capitis (Anoplura: Pediculidae) , 2003, Journal of medical entomology.

[17]  M. Stoneking,et al.  Molecular Evolution of Pediculus humanus and the Origin of Clothing , 2003, Current Biology.

[18]  J. Clark,et al.  Permethrin-resistant human head lice, Pediculus capitis, and their treatment. , 2003, Archives of dermatology.

[19]  D. Raoult,et al.  The geographical segregation of human lice preceded that of Pediculus humanus capitis and Pediculus humanus humanus. , 2003, Comptes rendus biologies.

[20]  Ilia J. Leitch,et al.  Comparisons with Caenorhabditis (∼100 Mb) and Drosophila (∼175 Mb) Using Flow Cytometry Show Genome Size in Arabidopsis to be ∼157 Mb and thus ∼25 % Larger than the Arabidopsis Genome Initiative Estimate of ∼125 Mb , 2003 .

[21]  Scott R. Lillibridge,et al.  Public Health Assessment of Potential Biological Terrorism Agents , 2002, Emerging infectious diseases.

[22]  T. Gregory The bigger the C-value, the larger the cell: genome size and red blood cell size in vertebrates. , 2001, Blood cells, molecules & diseases.

[23]  A. Hightower,et al.  Lice, nits, and school policy. , 2001, Pediatrics.

[24]  T. Gregory,et al.  Coincidence, coevolution, or causation? DNA content, cellsize, and the C‐value enigma , 2001, Biological reviews of the Cambridge Philosophical Society.

[25]  A. Devonshire,et al.  Molecular Analysis of kdr-like Resistance in Permethrin-Resistant Strains of Head Lice, Pediculus capitis , 2000 .

[26]  K. Gage,et al.  Bacterial and Rickettsial Diseases , 2000 .

[27]  D. Raoult,et al.  Body Lice as Tools for Diagnosis and Surveillance of Reemerging Diseases , 1999, Journal of Clinical Microbiology.

[28]  P. Hegde,et al.  The Institute for Genomic Research , 1998, Current Biology.

[29]  P. Hebert,et al.  Genome size variation in aphids , 1995 .

[30]  M. M. Cole Chapter 2 – Body Lice , 1966 .

[31]  Carroll N. Smith Insect colonization and mass production. , 1966 .

[32]  G. Hopkins The Sucking Lice , 1952, Nature.

[33]  G. F. Ferris The sucking lice , 1951 .

[34]  G. H. Culpepper Rearing and maintaining a laboratory colony of body lice on rabbits. , 1948, The American journal of tropical medicine and hygiene.

[35]  G. H. Culpepper The Rearing and Maintenance of a Laboratory Colony of the Body Louse. , 1944 .