MASSIV: Mass Assembly Survey with SINFONI in VVDS - II. Kinematics and close environment classification

Context. Processes driving mass assembly are expected to evolve on different timescales along cosmic time. A transition might happen around z similar to 1 as the cosmic star formation rate starts its decrease. Aims. We aim to identify the dynamical nature of galaxies in a representative sample to be able to infer and compare the mass assembly mechanisms across cosmic time. Methods. We present an analysis of the kinematics properties of 50 galaxies with redshifts 0.9 \textless z \textless 1.6 from the MASSIV sample observed with SINFONI/VLT with a mass range from 4.5 x 10(9) M-circle dot to 1.7 x 10(11) M-circle dot and a star formation rate from 6 M-circle dot yr(-1) to 300 M-circle dot yr(-1). This is the largest sample with 2D kinematics in this redshift range. We provide a classification based on kinematics as well as on close galaxy environment. Results. We find that a significant fraction of galaxies in our sample (29%) experience merging or have close companions that may be gravitationally linked. This places a lower limit on the fraction of interacting galaxies because ongoing mergers are probably also present but harder to identify. We find that at least 44% of the galaxies in our sample display ordered rotation, whereas at least 35% are non-rotating objects. All rotators except one are compatible with rotation-dominated (V-max/sigma \textgreater 1) systems. Non-rotating objects are mainly small objects (R-e \textless 4 kpc). They show an anti-correlation of their velocity dispersion and their effective radius. These low-mass objects (log M-star \textless 10.5) may be ongoing mergers in a transient state, galaxies with only one unresolved star-forming region, galaxies with an unstable gaseous phase or, less probably, spheroids. Combining our sample with other 3D-spectroscopy samples, we find that the local velocity dispersion of the ionized gas component decreases continuously from z similar to 3 to z = 0. The proportion of disks also seems to be increasing in star-forming galaxies when the redshift decreases. The number of interacting galaxies seems to be at a maximum at z similar to 1.2. Conclusions. These results draw a picture in which cold gas accretion may still be efficient at z similar to 1.2 but in which mergers may play a much more significant role at z similar to 1.2 than at higher redshift. From a dynamical point of view, the redshift range 1 \textless z \textless 2 therefore appears as a transition period in the galaxy mass assembly process(star star star star).

[1]  H. Flores,et al.  3D spectroscopy with VLT/GIRAFFE. I. The true Tully Fisher relationship at z ̃ 0.6 , 2006, astro-ph/0603563.

[2]  Heidelberg,et al.  IMAGES IV* : strong evolution of the oxygen abundance in gaseous phases of intermediate mass galaxies from z ∼ 0.8 , 2008, 0810.0272.

[3]  William H. Press,et al.  Numerical Recipes in C, 2nd Edition , 1992 .

[4]  S. Djorgovski,et al.  Fundamental Properties of Elliptical Galaxies , 1987 .

[5]  Bernard Delabre,et al.  First light of SINFONI at the VLT , 2004 .

[6]  A. Cimatti,et al.  Dynamical properties of AMAZE and LSD galaxies from gas kinematics and the Tully-Fisher relation at z~3 , 2010, 1007.4180.

[7]  A. Mazure,et al.  The Vimos VLT deep survey Global properties of 20 000 galaxies in the IAB < 22.5 WIDE survey , 2008, 0804.4568.

[8]  M. Irwin,et al.  The UKIRT Infrared Deep Sky Survey (UKIDSS) , 2006, astro-ph/0604426.

[9]  L. Ho,et al.  Detailed structural decomposition of galaxy images , 2002, astro-ph/0204182.

[10]  M. Franx,et al.  SUBMITTED TO THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 10/09/06 DETECTION OF QUIESCENT GALAXIES IN A BICOLOR SEQUENCE FROM Z = 0 − 2 , 2022 .

[11]  Patrick J. McCarthy,et al.  High star formation rates as the origin of turbulence in early and modern disk galaxies , 2010, Nature.

[12]  UCOLick,et al.  The Redshift Evolution of Wet, Dry, and Mixed Galaxy Mergers from Close Galaxy Pairs in the DEEP2 Galaxy Redshift Survey , 2008, 0802.3004.

[13]  A. Mazure,et al.  The VIMOS VLT Deep Survey - Evolution of the major merger rate since z ~ 1 from spectroscopically confirmed galaxy pairs , 2008, 0807.2578.

[14]  James E. Larkin,et al.  THE KILOPARSEC-SCALE KINEMATICS OF HIGH-REDSHIFT STAR-FORMING GALAXIES , 2009, 0901.2930.

[15]  R. Davies,et al.  Spectroscopy and photometry of elliptical galaxies. I: a new distance estimator , 1987 .

[16]  M. Dantel-Fort,et al.  The VIRMOS deep imaging survey: II: CFH12K BVRI optical data for the 0226-04 deep field , 2003 .

[17]  A. Kembhavi,et al.  IMAGES - III. The evolution of the near-infrared Tully-Fisher relation over the last 6 Gyr , 2008, 0803.3002.

[18]  L. Chemin,et al.  PHYSICAL CONDITIONS IN THE INTERSTELLAR MEDIUM OF INTENSELY STAR-FORMING GALAXIES AT REDSHIFT∼2 , 2009, 0902.2784.

[19]  R. Davé,et al.  How do galaxies get their gas , 2002, astro-ph/0407095.

[20]  G. Cresci,et al.  THE IMPACT OF COLD GAS ACCRETION ABOVE A MASS FLOOR ON GALAXY SCALING RELATIONS , 2009, 0912.1858.

[21]  M. Lehnert,et al.  Can evidence for cosmological accretion be observed in the Hα emission from galaxies at z ~ 2? , 2011, 1104.4496.

[22]  C. Balkowski,et al.  Evidence for strong dynamical evolution in disc galaxies through the last 11 Gyr. GHASP VIII – a local reference sample of rotating disc galaxies for high‐redshift studies , 2009, 0904.3891.

[23]  B. Garilli,et al.  The VIMOS VLT Deep Survey: star formation rate density of Lyα emitters from a sample of 217 galaxies with spectroscopic redshifts 2 ≤ z ≤ 6.6 , 2010, 1003.3480.

[24]  Andrea Modigliani,et al.  The SINFONI pipeline , 2007 .

[25]  M. Cappellari,et al.  The SAURON project - XI. Stellar Populations from Absorption Line Strength Maps of 24 Early-Type Spirals , 2007, 0704.2839.

[26]  J. Gach,et al.  GHASP: an Hα kinematic survey of spiral and irregular galaxies - VI. New Hα data cubes for 108 galaxies , 2008, 0805.0976.

[27]  R. Davé,et al.  Galaxies in a simulated ΛCDM Universe – I. Cold mode and hot cores , 2008, 0809.1430.

[28]  A. Cimatti,et al.  THE SINS SURVEY: BROAD EMISSION LINES IN HIGH-REDSHIFT STAR-FORMING GALAXIES , 2009, 0902.4704.

[29]  B. Garilli,et al.  The cosmic star formation rate evolution from z = 5 to z = 0 from the VIMOS VLT deep survey , 2006, astro-ph/0609005.

[30]  B. Guiderdoni,et al.  IMAGES. II. A surprisingly low fraction of undisturbed rotating spiral disks at z ~ 0.6 The morpho-k , 2008, 0803.2370.

[31]  D. Narayanan,et al.  MOLECULAR DISK PROPERTIES IN EARLY-TYPE GALAXIES , 2010, 1008.2187.

[32]  Benoit Neichel,et al.  IMAGES (cid:1) . I. Strong evolution of galaxy kinematics since z = 1 , 2008 .

[33]  S. Rabien,et al.  From Rings to Bulges: Evidence for Rapid Secular Galaxy Evolution at z ~ 2 from Integral Field Spectroscopy in the SINS Survey , 2008, 0807.1184.

[34]  G. Cresci,et al.  ACCEPTED FOR PUBLICATION IN APJ Preprint typeset using LATEX style emulateapj v. 11/26/04 MERGERS AND MASS ACCRETION RATES IN GALAXY ASSEMBLY: THE MILLENNIUM SIMULATION COMPARED TO OBSERVATIONS OF z ≈ 2 GALAXIES , 2022 .

[35]  B. Garilli,et al.  MASSIV: Mass Assemby Survey with SINFONI in VVDS. I. Survey description and global properties of the 0.9 < z < 1.8 galaxy sample , 2011, 1111.3631.

[36]  J. Silk,et al.  Galaxy Mergers at z ≳ 1 in the HUDF: Evidence for a Peak in the Major Merger Rate of Massive Galaxies , 2007, 0712.0416.

[37]  Romain Teyssier,et al.  HYDRODYNAMICS OF HIGH-REDSHIFT GALAXY COLLISIONS: FROM GAS-RICH DISKS TO DISPERSION-DOMINATED MERGERS AND COMPACT SPHEROIDS , 2010, 1006.4782.

[38]  David Schiminovich,et al.  Hubble Space Telescope Morphologies of Local Lyman Break Galaxy Analogs. I. Evidence for Starbursts Triggered by Merging , 2007, 0709.3304.

[39]  R. Abuter,et al.  SINFONI Integral Field Spectroscopy of z ~ 2 UV-selected Galaxies: Rotation Curves and Dynamical Evolution , 2006, astro-ph/0603559.

[40]  3D spectroscopy with VLT/GIRAFFE IV. Angular momentum and dynamical support of intermediate redshift galaxies , 2007, astro-ph/0701723.

[41]  Harald Kuntschner,et al.  The SAURON project – XVII. Stellar population analysis of the absorption line strength maps of 48 early-type galaxies , 2010, 1006.1574.

[42]  C. Conselice,et al.  The structures of distant galaxies – I. Galaxy structures and the merger rate to z∼ 3 in the Hubble Ultra-Deep Field , 2007, 0711.2333.

[43]  A. Cimatti,et al.  Kinemetry of SINS High-Redshift Star-Forming Galaxies: Distinguishing Rotating Disks from Major Mergers , 2008, 0802.0879.

[44]  A. Dekel,et al.  Galaxy bimodality due to cold flows and shock heating , 2004, astro-ph/0412300.

[45]  Heidelberg,et al.  Nearly 5000 Distant Early-Type Galaxies in COMBO-17: A Red Sequence and Its Evolution since z ~ 1 , 2003, astro-ph/0303394.

[46]  Jose Luis. Sersic,et al.  Atlas de Galaxias Australes , 1968 .

[47]  Shy Genel,et al.  THE SINS SURVEY: SINFONI INTEGRAL FIELD SPECTROSCOPY OF z ∼ 2 STAR-FORMING GALAXIES , 2009, 0903.1872.

[48]  D. Schiminovich,et al.  THE KINEMATICS OF IONIZED GAS IN LYMAN-BREAK ANALOGS AT z ∼ 0.2 , 2010, 1009.4934.

[49]  A. Szalay,et al.  STUDYING LARGE- AND SMALL-SCALE ENVIRONMENTS OF ULTRAVIOLET LUMINOUS GALAXIES , 2009, 0906.1010.

[50]  F. Bournaud,et al.  Multiple minor mergers: formation of elliptical galaxies and constraints for the growth of spiral disks , 2007, 0709.3439.

[51]  Benjamin D. Johnson,et al.  The Young and the Dustless: Interpreting Radio Observations of Ultraviolet-Luminous Galaxies , 2007, 0707.1878.

[52]  R. Teyssier,et al.  Cold streams in early massive hot haloes as the main mode of galaxy formation , 2008, Nature.

[53]  Andrew M. Hopkins,et al.  On the Normalization of the Cosmic Star Formation History , 2006, astro-ph/0601463.

[54]  H Germany,et al.  The galaxy major merger fraction to ${z}$ ~ 1 , 2009, 0905.2765.

[55]  L. Paioro,et al.  MASSIV: Mass Assembly Survey with SINFONI in VVDS - II. Kinematics and close environment classification , 2012, 1201.3329.

[56]  D. Schiminovich,et al.  AN OSIRIS STUDY OF THE GAS KINEMATICS IN A SAMPLE OF UV-SELECTED GALAXIES: EVIDENCE OF “HOT AND BOTHERED” STARBURSTS IN THE LOCAL UNIVERSE , 2009, 0906.1012.

[57]  P. Buschkamp,et al.  THE SINS SURVEY: MODELING THE DYNAMICS OF z ∼ 2 GALAXIES AND THE HIGH-z TULLY–FISHER RELATION , 2009, 0902.4701.