Effects of Concentration, Crystal Structure, Magnetism, and Electronic Structure Method on First-Principles Oxygen Vacancy Formation Energy Trends in Perovskites

Systematic prediction of the redox reaction energetics of large sets of 3d transition metal oxides is imperative to the selection of oxygen carrier candidates in applications ranging from chemical looping to solid oxide fuel cell (SOFC) cathode design. In particular, the energetic study of oxygen vacancy formation in unmixed perovskites with La, alkali, and alkaline A-site metal cations—as well as 3d transition metal B-site cations—is a crucial first step in understanding the energetic tunability afforded by cation doping in ABO3 materials. An assessment of the relative oxygen vacancy formation energetics of LaBO3, SrBO3, and similar materials that serve as a guideline for predicting energetics in related systems is completed below using density functional theory (DFT). This assessment illustrates which simplifications can be made in the prediction of energetics trends without affecting trend order. The independent consideration of oxygen vacancy concentration, crystal structure, and antiferromagnetic (AF...

[1]  Xin Hu,et al.  Catalytic combustion of methane on La1−xCexFeO3 oxides , 2013 .

[2]  J. Rossmeisl,et al.  Generalized trends in the formation energies of perovskite oxides. , 2013, Physical chemistry chemical physics : PCCP.

[3]  V. I. Chedryk,et al.  Structure and size effects on the catalytic properties of complex metal oxide compositions in the oxidative conversion of methane , 2013, Theoretical and Experimental Chemistry.

[4]  P. Barbato,et al.  Catalytic combustion of CH4-H2-CO mixtures at pressure up to 10 bar , 2013 .

[5]  B. Meredig,et al.  Approaching chemical accuracy with density functional calculations: Diatomic energy corrections , 2013 .

[6]  Fanxing Li,et al.  Iron Oxide with Facilitated O2– Transport for Facile Fuel Oxidation and CO2 Capture in a Chemical Looping Scheme , 2013 .

[7]  S. Stølen,et al.  Oxygen non-stoichiometry and redox thermodynamics of LaMn1 − xCoxO3 − δ , 2013 .

[8]  John R. Kitchin,et al.  Number of outer electrons as descriptor for adsorption processes on transition metals and their oxides , 2013 .

[9]  G. Groppi,et al.  Catalytic combustion of methane on BaZr(1−x)MexO3 perovskites synthesised by a modified citrate method , 2012 .

[10]  V. D. Sarli,et al.  Methane catalytic combustion under pressure , 2012 .

[11]  S. Stølen,et al.  DFT-study of the energetics of perovskite-type oxides LaMO3 (M = Sc–Cu) , 2012 .

[12]  J. Kitchin,et al.  Effects of strain, d-band filling, and oxidation state on the surface electronic structure and reactivity of 3d perovskite surfaces. , 2012, The Journal of chemical physics.

[13]  Ian S. Metcalfe,et al.  Chemical looping and oxygen permeable ceramic membranes for hydrogen production – a review , 2012 .

[14]  Michele Pavone,et al.  Quantum-mechanics-based design principles for solid oxide fuel cell cathode materials , 2011 .

[15]  N. Marzari,et al.  Accurate potential energy surfaces with a DFT+U(R) approach. , 2011, The Journal of chemical physics.

[16]  Yan Chen,et al.  Surface electronic structure transitions at high temperature on perovskite oxides: the case of strained La0.8Sr0.2CoO3 thin films. , 2011, Journal of the American Chemical Society.

[17]  B. Yildiz,et al.  New Insights into the Strain Coupling to Surface Chemistry, Electronic Structure, and Reactivity of La0.7Sr0.3MnO3 , 2011 .

[18]  W. Ge,et al.  Oxygen-vacancy formation in LaMO3 (M = Ti, V, Cr, Mn, Fe, Co, Ni) calculated at both GGA and GGA + U levels , 2011 .

[19]  D. Blank,et al.  Misfit strain accommodation in epitaxial ABO3 perovskites: Lattice rotations and lattice modulations , 2010, 1009.6018.

[20]  Heather J Kulik,et al.  Systematic study of first-row transition-metal diatomic molecules: a self-consistent DFT+U approach. , 2010, The Journal of chemical physics.

[21]  Shyue Ping Ong,et al.  Hybrid density functional calculations of redox potentials and formation energies of transition metal compounds , 2010 .

[22]  J. Maier,et al.  First-Principles Modeling of Oxygen Interaction with SrTiO3(001) Surface: Comparative Density-Functional LCAO and Plane-Wave Study , 2010, 1005.4833.

[23]  C. H. Kim,et al.  Strontium-Doped Perovskites Rival Platinum Catalysts for Treating NOx in Simulated Diesel Exhaust , 2010, Science.

[24]  Anders Lyngfelt,et al.  Use of CaMn0.875Ti0.125O3 as Oxygen Carrier in Chemical-Looping with Oxygen Uncoupling , 2009 .

[25]  Chusheng Chen,et al.  Surface properties and catalytic performance in methane combustion of La0.7Sr0.3Fe1−yGayO3−δ perovskite-type oxides , 2009 .

[26]  N. Marzari,et al.  A self-consistent Hubbard U density-functional theory approach to the addition-elimination reactions of hydrocarbons on bare FeO+. , 2008, The Journal of chemical physics.

[27]  F. Gao,et al.  La and Sc co-doped SrTiO3 as novel anode materials for solid oxide fuel cells , 2008 .

[28]  T. Jacob,et al.  Electronic structure and thermodynamic stability of LaMnO 3 and La 1-x Sr x MnO 3 (001) surfaces: Ab initio calculations , 2008 .

[29]  Mohammad. M. Hossain,et al.  Chemical-looping combustion (CLC) for inherent CO2 separations—a review , 2008 .

[30]  J. Kuhn,et al.  Oxygen Exchange Kinetics over Sr-and Co-Doped LaFeO3 , 2008 .

[31]  J. Kuhn,et al.  Effect of Co Content Upon the Bulk Structure of Sr- and Co-doped LaFeO3 , 2008 .

[32]  K. P. Ong,et al.  Electrical conductivity and performance of doped LaCrO3 perovskite oxides for solid oxide fuel cells , 2008 .

[33]  J. Zuo,et al.  Metal-insulator transition and its relation to magnetic structure in (LaMnO3)2n/(SrMnO3)n superlattices. , 2007, Physical review letters.

[34]  Wei Liu,et al.  Combustion synthesis and characterization of porous perovskite catalysts , 2007 .

[35]  E. Pavarini,et al.  Orbital fluctuations in the different phases of LaVO(3) and YVO(3). , 2007, Physical review letters.

[36]  A. Lyngfelt,et al.  Thermal Analysis of Chemical-Looping Combustion , 2006 .

[37]  N. Marzari,et al.  Density functional theory in transition-metal chemistry: a self-consistent Hubbard U approach. , 2006, Physical review letters.

[38]  G. Wahnström,et al.  Thermodynamics of doping and vacancy formation in BaZrO3 perovskite oxide from density functional calculations , 2006 .

[39]  Svein Stølen,et al.  Oxygen-deficient perovskites: linking structure, energetics and ion transport. , 2006, Physical chemistry chemical physics : PCCP.

[40]  A. Millis,et al.  Lattice relaxation in oxide heterostructures: LaTiO3/SrTiO3 superlattices. , 2006, Physical review letters.

[41]  Yngve Larring,et al.  La0.8Sr0.2Co0.2Fe0.8O3−δ as a potential oxygen carrier in a chemical looping type reactor, an in-situ powder X-ray diffraction study , 2005 .

[42]  K. Wiik,et al.  Crystal structure and thermal expansion of La1-xSrxFeO3-δ materials , 2005 .

[43]  H. Fjellvåg,et al.  Electronic Structure and Excited-state Properties of Perovskite-like Oxides , 2004 .

[44]  Stefano de Gironcoli,et al.  Linear response approach to the calculation of the effective interaction parameters in the LDA + U method , 2004, cond-mat/0405160.

[45]  J. Mcbreen,et al.  Synchrotron X-ray absorption of LaCoO3 perovskite , 2004 .

[46]  Vito Specchia,et al.  Combustion synthesis of perovskite-type catalysts for natural gas combustion , 2003 .

[47]  S. Ronchetti,et al.  Catalytic properties of stoichiometric and non-stoichiometric LaFeO3 perovskite for total oxidation of methane , 2002 .

[48]  R. Nieminen,et al.  Charged point defects in semiconductors and the supercell approximation , 2002 .

[49]  J. Fierro,et al.  Surface properties and catalytic performance for ethane combustion of La1−xKxMnO3+δ perovskites , 2001 .

[50]  J. Tatibouët,et al.  Methane catalytic combustion on La-based perovskite type catalysts in high temperature isothermal conditions , 2001 .

[51]  Yoji Sakurai,et al.  An investigation of LaNi1−xFexO3 as a cathode material for solid oxide fuel cells , 1999 .

[52]  P. Ciambelli,et al.  Perovskite-Type Oxides: II. Redox Properties of LaMn1−xCuxO3 and LaCo1−xCuxO3 and Methane Catalytic Combustion , 1999 .

[53]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[54]  L. Marchetti,et al.  Catalytic combustion of methane over perovskites , 1998 .

[55]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[56]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[57]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[58]  G. Costa,et al.  Structural and thermal properties of the alkaline cuprate KCuO2 , 1995 .

[59]  G. Busca,et al.  Surface and structure characterization of some perovskite-type powders to be used as combustion catalysts , 1995 .

[60]  P. Norby,et al.  The crystal structure of lanthanum manganate(iii), LaMnO3, at room temperature and at 1273 K under N2 , 1995 .

[61]  J. Zaanen,et al.  Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. , 1995, Physical review. B, Condensed matter.

[62]  M. Islam,et al.  Oxygen Ion Migration in Perovskite-Type Oxides , 1995 .

[63]  J. Goodenough,et al.  LaCoO{sub 3} revisited , 1995 .

[64]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[65]  Sawatzky,et al.  Local-density functional and on-site correlations: The electronic structure of La2CuO4 and LaCuO3. , 1994, Physical review. B, Condensed matter.

[66]  T. Seiyama,et al.  Total Oxidation of Hydrocarbons on Perovskite Oxides , 1992 .

[67]  J. Mizusaki Nonstoichiometry, diffusion, and electrical properties of perovskite-type oxide electrode materials , 1992 .

[68]  E. Cordfunke,et al.  A new defect model to describe the oxygen deficiency in perovskite-type oxides , 1991 .

[69]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[70]  L. Gauckler,et al.  Stability of the perovskite phase LaBO3 (B = V, Cr, Mn, Fe, Co, Ni) in reducing atmosphere I. Experimental results , 1979 .

[71]  D. Cox,et al.  Structural studies of the (La, Sr) CrO3 system☆ , 1977 .

[72]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[73]  P. M. Raccah,et al.  Phase Transitions in Perovskitelike Compounds of the Rare Earths , 1970 .

[74]  S. Geller Crystallographic studies of perovskite‐like compounds. IV. Rare earth scandates, vanadites, galliates, orthochromites , 1957 .

[75]  E. Wollan,et al.  Neutron Diffraction Study of the Magnetic Properties of the Series of Perovskite-Type Compounds [ ( 1 − x ) La , x Ca ] Mn O 3 , 1955 .

[76]  F. Murnaghan The Compressibility of Media under Extreme Pressures. , 1944, Proceedings of the National Academy of Sciences of the United States of America.

[77]  Femina Patel,et al.  La1-xSrxCoO3 (x=0, 0.2) Perovskites Type Catalyst for Carbon Monoxide Emission Control from Auto-Exhaust☆ , 2013 .

[78]  Hans Wondratschek,et al.  Bilbao Crystallographic Server: I. Databases and crystallographic computing programs , 2006 .

[79]  H. Fjellvåg,et al.  NON-STOICHIOMETRIC LAVO3. I. SYNTHESIS AND PHYSICAL PROPERTIES , 1998 .

[80]  K. Eguchi,et al.  Catalytic combustion of methane over various perovskite-type oxides , 1986 .