Classical quadrature rules via Gaussian processes

In an extension to some previous work on the topic, we show how all classical polynomial-based quadrature rules can be interpreted as Bayesian quadrature rules if the covariance kernel is selected suitably. As the resulting Bayesian quadrature rules have zero posterior integral variance, the results of this article are mostly of theoretical interest in clarifying the relationship between the two different approaches to numerical integration.

[1]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[2]  Baver Okutmustur Reproducing kernel Hilbert spaces , 2005 .

[3]  M. Urner Scattered Data Approximation , 2016 .

[4]  A. O'Hagan,et al.  Bayes–Hermite quadrature , 1991 .

[5]  Simo Särkkä,et al.  On the use of gradient information in Gaussian process quadratures , 2016, 2016 IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP).

[6]  Ben Calderhead,et al.  Probabilistic Linear Multistep Methods , 2016, NIPS.

[7]  F. M. Larkin Optimal approximation in Hilbert spaces with reproducing kernel functions , 1970 .

[8]  Mark A. Girolami,et al.  Bayesian Probabilistic Numerical Methods , 2017, SIAM Rev..

[9]  Ronald Cools,et al.  Constructing cubature formulae: the science behind the art , 1997, Acta Numerica.

[10]  A. Berlinet,et al.  Reproducing kernel Hilbert spaces in probability and statistics , 2004 .

[11]  N. Aronszajn Theory of Reproducing Kernels. , 1950 .

[12]  F. M. Larkin Gaussian measure in Hilbert space and applications in numerical analysis , 1972 .

[13]  Michael A. Osborne,et al.  Probabilistic Integration: A Role for Statisticians in Numerical Analysis? , 2015 .

[14]  G. Wahba,et al.  A Correspondence Between Bayesian Estimation on Stochastic Processes and Smoothing by Splines , 1970 .

[15]  Michael A. Osborne,et al.  Probabilistic numerics and uncertainty in computations , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[16]  David Duvenaud,et al.  Probabilistic ODE Solvers with Runge-Kutta Means , 2014, NIPS.

[17]  Simo Särkkä,et al.  Fully symmetric kernel quadrature , 2017, SIAM J. Sci. Comput..

[18]  Jouni Hartikainen,et al.  On the relation between Gaussian process quadratures and sigma-point methods , 2015, 1504.05994.

[19]  Frank Stenger,et al.  Con-struction of fully symmetric numerical integration formulas , 1967 .

[20]  J. McNamee,et al.  Construction of fully symmetric numerical integration formulas of fully symmetric numerical integration formulas , 1967 .

[21]  Klaus Ritter,et al.  Bayesian numerical analysis , 2000 .

[22]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .