Freeform shape optimization of a compact DC photo-electron gun using isogeometric analysis

Compact DC high-voltage photo-electron guns are able to meet the challenging demands of high-current applications such as energy-recovery linacs. A main design parameter for such sources is the electric field strength, which depends on the electrode geometry and is limited by the field-emission threshold of the electrode material. In order to minimize the maximum field strength for optimal gun operation, isogeometric analysis (IGA) can be used to exploit the axisymmetric geometry and describe its cross section by non-uniform rational B-splines, the control points of which are the parameters to be optimized. This computationally efficient method is capable of describing CAD-generated geometries using open source software (GeoPDEs, NLopt, Octave) and it can simplify the step from design to simulation. We will present the mathematical formulation, the software workflow and the results of an IGA-based shape optimization for a planned high-voltage upgrade of the DC photogun teststand Photo-CATCH at TU Darmstadt. Simulations assuming a bias voltage of -300 kV yielded maximum field gradients of 9.06 MV/m on the surface of an inverted-insulator electrode and below 3 MV/m on the surface of the photocathode.

[1]  J. R. Pierce,et al.  Rectilinear Electron Flow in Beams , 1940 .

[2]  D. E. Radley,et al.  The Theory of the Pierce Type Electron Gun , 1958 .

[3]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[4]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[5]  C. D. Boor,et al.  On Calculating B-splines , 1972 .

[6]  K. Halbach,et al.  Superfish-a Computer Program for Evaluation of RF Cavities with Cylindrical Symmetry , 1976 .

[7]  C. Birdsall,et al.  Plasma Physics via Computer Simulation , 2018 .

[8]  L. Piegl,et al.  Curve and surface constructions using rational B-splines , 1987 .

[9]  M. Powell A Direct Search Optimization Method That Models the Objective and Constraint Functions by Linear Interpolation , 1994 .

[10]  Max S. Zolotorev,et al.  An Inverted geometry, high voltage polarized electron gun with UHV load lock , 1994 .

[11]  A. Richter,et al.  Operational Experience at the S-DALINAC A , 1996 .

[12]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[13]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[14]  Gershon Elber,et al.  Geometric modeling with splines - an introduction , 2001 .

[15]  Charles Sinclair,et al.  Performance of a DC GaAs photocathode gun for the Jefferson lab FEL , 2001 .

[16]  M. Poelker,et al.  A Comparison of Outgassing Measurements for Three Vacuum Chamber Materials , 2003 .

[17]  K. Flottmann,et al.  Some basic features of the beam emittance , 2003 .

[18]  R.L. Ives,et al.  Design of an electron gun using computer optimization , 2004, IEEE Transactions on Plasma Science.

[19]  Edward J. Walsh,et al.  DART system analysis. , 2005 .

[20]  Charles Sinclair,et al.  Multivariate optimization of a high brightness dc gun photoinjector , 2005 .

[21]  Hiroshi Matsumoto,et al.  Reduction of field emission dark current for high-field gradient electron gun by using a molybdenum cathode and titanium anode , 2005 .

[22]  Xin Yao,et al.  Search biases in constrained evolutionary optimization , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[23]  C. Sinclair,et al.  DC photoemission electron guns as ERL sources , 2006 .

[24]  Donald W. Feldman,et al.  Photocathodes for the energy recovery linacs , 2006 .

[25]  P. Hartmann,et al.  Development of a high average current polarized electron source with long cathode operational lifetime , 2007 .

[26]  Ivan Bazarov,et al.  Thermal emittance and response time measurements of negative electron affinity photocathodes , 2008 .

[27]  W. Ackermann,et al.  Coupler Kicks in the Third Harmonic Module for the XFEL , 2009 .

[28]  Stefan Ulbrich,et al.  Optimization with PDE Constraints , 2008, Mathematical modelling.

[29]  Annalisa Buffa,et al.  Isogeometric Analysis for Electromagnetic Problems , 2010, IEEE Transactions on Magnetics.

[30]  John A. Evans,et al.  Isogeometric Analysis , 2010 .

[31]  Paolo Di Barba,et al.  Multiobjective Shape Design in Electricity and Magnetism , 2010, Lecture Notes in Electrical Engineering.

[32]  D. Machie,et al.  Load-locked dc high voltage GaAs photogun with an inverted-geometry ceramic insulator , 2010 .

[33]  Manu N. Lakshmanan,et al.  Comparison of dc and superconducting rf photoemission guns for high brightness high average current beam production , 2011, 1103.5108.

[34]  Ralf Eichhorn,et al.  Status and recent developments at the polarized-electron injector of the superconducting Darmstadt electron linear accelerator S-DALINAC , 2011 .

[35]  D. Machie,et al.  Charge and fluence lifetime measurements of a dc high voltage GaAs photogun at high average current , 2011 .

[36]  C. Hernandez-Garcia,et al.  Evaluation of niobium as candidate electrode material for dc high voltage photoelectron guns , 2012 .

[37]  Jens Gravesen,et al.  Iso-geometric shape optimization of magnetic density separators , 2013 .

[38]  Jim Euchner Design , 2014, Catalysis from A to Z.

[39]  Joachim Enders,et al.  Investigation of pulsed spin polarized electron beams at the S-DALINAC , 2014 .

[40]  John Dobbins,et al.  Design, conditioning, and performance of a high voltage, high brightness dc photoelectron gun with variable gap. , 2014, The Review of scientific instruments.

[41]  K. Perez Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment , 2014 .

[42]  Nobuyuki Nishimori,et al.  Experimental investigation of an optimum configuration for a high-voltage photoemission gun for operation at ≥500 kV , 2014 .

[43]  Kurt Aulenbacher,et al.  Test electron source for increased brightness emission by near band gap photoemission , 2015 .

[44]  Giancarlo Sangalli,et al.  Approximation estimates for isogeometric spaces in multipatch geometries , 2015 .

[45]  Zeger Bontinck,et al.  Optimization of a Stern–Gerlach Magnet by Magnetic Field–Circuit Coupling and Isogeometric Analysis , 2015, IEEE Transactions on Magnetics.

[46]  Wamadeva Balachandran,et al.  Development of an evolutionary algorithm for design of electron guns for material processing , 2015, 2015 7th International Joint Conference on Computational Intelligence (IJCCI).

[47]  Wei Jiang,et al.  Genetic Algorithm-Based Shape Optimization of Modulating Anode for Magnetron Injection Gun With Low Velocity Spread , 2015, IEEE Transactions on Electron Devices.

[48]  C. Hernandez-Garcia,et al.  High voltage studies of inverted-geometry ceramic insulators for a 350 kV DC polarized electron gun , 2016, IEEE Transactions on Dielectrics and Electrical Insulation.

[49]  Rafael Vázquez,et al.  A new design for the implementation of isogeometric analysis in Octave and Matlab: GeoPDEs 3.0 , 2016, Comput. Math. Appl..

[50]  Zeger Bontinck,et al.  Recent Advances of Isogeometric Analysis in Computational Electromagnetics , 2017, ArXiv.

[51]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[52]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[53]  C. Hernández-García,et al.  Electrostatic design and conditioning of a triple point junction shield for a -200 kV DC high voltage photogun. , 2018, The Review of scientific instruments.

[54]  Ursula van Rienen,et al.  Systematic study of multipactor suppression techniques for a superconducting rf gun , 2018, Physical Review Accelerators and Beams.

[55]  Norbert Pietralla,et al.  The Institute of Nuclear Physics at the TU Darmstadt , 2018 .

[56]  Luca Bonaventura,et al.  High order time integrators for the simulation of charged particle motion in magnetic quadrupoles , 2019, Comput. Phys. Commun..

[57]  C. Hernandez-Garcia,et al.  Compact −300  kV dc inverted insulator photogun with biased anode and alkali-antimonide photocathode , 2019, Physical Review Accelerators and Beams.

[58]  Joachim Enders,et al.  A test system for optimizing quantum efficiency and dark lifetime of GaAs photocathodes , 2019, Journal of Instrumentation.

[59]  Luca Bonaventura,et al.  IsoGeometric Approximations for Electromagnetic Problems in Axisymmetric Domains , 2019, ArXiv.

[60]  Peter Monk,et al.  Finite Element Methods for Maxwell's Equations , 2003 .

[61]  Sebastian Schöps,et al.  Shape Optimization of Rotating Electric Machines Using Isogeometric Analysis , 2019, IEEE Transactions on Energy Conversion.

[62]  P. Alam ‘U’ , 2021, Composites Engineering: An A–Z Guide.