An adaptive finite element approach for frictionless contact problems

The derivation of an a posteriori error estimator for frictionless contact problems under the hypotheses of linear elastic behaviour and infinitesimal deformation is presented. The approximated solution of this problem is obtained by using the finite element method. A penalization or augmented-Lagrangian technique is used to deal with the unilateral boundary condition over the contact boundary. An a posteriori error estimator suitable for adaptive mesh refinement in this problem is proposed, together with its mathematical justification. Up to the present time, this mathematical proof is restricted to the penalization approach. Several numerical results are reported in order to corroborate the applicability of this estimator and to compare it with other a posteriori error estimators. Copyright © 2001 John Wiley & Sons, Ltd.

[1]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[2]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[3]  I. Babuska,et al.  A‐posteriori error estimates for the finite element method , 1978 .

[4]  A. R. Mitchell,et al.  An analysis of a cubic isoparametric transformation , 1978 .

[5]  I. Babuska,et al.  A-Posteriori Error Estimates and Adaptive Techniques for the Finite Element Method. , 1981 .

[6]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .

[7]  R. Bank,et al.  Some a posteriori error estimators for elliptic partial differential equations , 1985 .

[8]  R. Glowinski,et al.  Numerical Methods for Nonlinear Variational Problems , 1985 .

[9]  P. Panagiotopoulos Inequality problems in mechanics and applications , 1985 .

[10]  P. Panagiotopoulos Inequality Problems in Mechanics and Applications: Convex and Nonconvex Energy Functions , 1985 .

[11]  I. Babuska,et al.  A feedback element method with a posteriori error estimation: Part I. The finite element method and some basic properties of the a posteriori error estimator , 1987 .

[12]  J. Oden,et al.  Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods , 1987 .

[13]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[14]  O. C. Zienkiewicz,et al.  Adaptive remeshing for compressible flow computations , 1987 .

[15]  J. Haslinger,et al.  Solution of Variational Inequalities in Mechanics , 1988 .

[16]  R. Verfürth A posteriori error estimators for the Stokes equations , 1989 .

[17]  J. Peiro,et al.  Unstructured mesh methods for CFD , 1990 .

[18]  J. Peiro,et al.  Adaptive remeshing for three-dimensional compressible flow computations , 1992 .

[19]  Claes Johnson,et al.  ADAPTIVE FINITE ELEMENT METHODS FOR THE OBSTACLE PROBLEM , 1992 .

[20]  J. Tinsley Oden,et al.  Local a posteriori error estimators for variational inequalities , 1993 .

[21]  R. Feijóo,et al.  Shape optimization in frictionless contact problems , 1994 .

[22]  J. Haslinger,et al.  Numerical comparison between two cost functions in contact shape optimization , 1995 .

[23]  K. Bathe Finite Element Procedures , 1995 .

[24]  Raúl A. Feijóo,et al.  A posteriori error estimation in sensitivity analysis , 1995 .

[25]  Klaus-Jürgen Bathe,et al.  On the constraint function method for contact problems , 1997 .

[26]  Ana Carolina Salgado,et al.  AN OBJECT ORIENTED TOOL FOR AUTOMATIC SURFACE MESH GENERATION USING THE ADVANCING FRONT TECHNIQUE , 1997 .