Mathematical models for the simulation of thermal regenerators: A state-of-the-art review

Thermal regenerators are compact heat exchangers in which heat is absorbed and released using high heat capacity materials. They have been used in the industries for more than two centuries. There are two applications of the regenerators as a heat recovery system in the processes: fixed-bed and rotary. In the fixed bed regenerators (FBRs) the bed is fixed and the hot and cold streams are periodically passed through the bed while in the rotary type the streams are fixed and the bed is rotating facing each stream. They have been used in the process industries such as aluminum and glass industries and power plants for many years. This paper reviews the basic mathematical models applied in the computer simulation of regenerators over almost 200 years which was taken for the development of Stirling׳s hot engine into a quantitative picture of transient thermal response. A number of original mathematical models are presented for the specific application in the process industries. Three different methods of solutions are introduced and finally, some experimental setup systems used for the verification of simulation results are presented and discussed.

[1]  Jung-Yang San,et al.  Effect of axial solid heat conduction and mass diffusion in a rotary heat and mass regenerator , 1993 .

[2]  Terrence W. Simon,et al.  A Microfabricated Segmented-Involute-Foil Regenerator for Enhancing Reliability and Performance of Stirling Engines , 2007 .

[3]  Frank Kreith,et al.  Thermal energy storage and regeneration , 1981 .

[4]  A. J. Willmott,et al.  Transient response of periodic-flow regenerators , 1977 .

[5]  Andrew Rowe,et al.  Modeling of Thermomagnetic Phenomena in Active Magnetocaloric Regenerators , 2014 .

[6]  E. A. Foumeny,et al.  Performance prediction of cyclic thermal regenerators utilising latent heat of packing matrix , 1995 .

[7]  Terrence W. Simon,et al.  A microfabricated involute-foil regenerator for stirling engines , 2007 .

[8]  Allan J. Organ Transient thermal performance of the stirling engine wire regenerator , 1994, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[9]  Modeling and Simulation of a Phase Change Regenerator System , 2004 .

[10]  A. J. Willmott Digital computer simulation of a thermal regenerator , 1964 .

[11]  T.E.W. Schumann,et al.  Heat transfer: A liquid flowing through a porous prism , 1929 .

[12]  Allan J. Organ The wire mesh regenerator of the Stirling cycle machine , 1994 .

[13]  S. Sarangi,et al.  Effects of axial conduction in the fluid on cryogenic regenerator performance , 1987 .

[14]  R. G. Barile,et al.  Gas-Particle Heat Transfer Coefficients in Packed Beds at Low Reynolds Numbers , 1968 .

[15]  T. Skiepko The effect of matrix longitudinal heat conduction on the temperature fields in the rotary heat exchanger , 1988 .

[16]  Ramesh K. Shah,et al.  A comparison of rotary regenerator theory and experimental results for an air preheater for a thermal power plant , 2004 .

[17]  S. M. Sadrameli,et al.  A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium , 2014 .

[18]  M. F. Edwards,et al.  A note on fluid mixing in beds of particles , 1969 .

[19]  A. London,et al.  Compact heat exchangers , 1960 .

[20]  Ping-Hei Chen,et al.  Experimental evaluation of thermal performance of Gifford–McMahon regenerator using an improved single-blow model with radial conduction , 1999 .

[21]  C. P. Howard,et al.  The Effect of Longitudinal Heat Conduction on Periodic-Flow Heat Exchanger Performance , 1964 .

[22]  Nooshin Salman Tabrizi,et al.  Modelling and simulation of cyclic thermal regenerators utilizing encapsulated phase change materials (PCMs) , 2003 .

[23]  N. Wakao,et al.  EFFECT OF FLUID DISPERSION COEFFICIENTS ON PARTICLE-TO-FLUID MASS TRANSFER COEFFICIENTS IN PACKED BEDS. CORRELATION OF SHERWOOD NUMBERS , 1978 .

[24]  M. M. Ganzarolli,et al.  Thermal analysis of a rotary regenerator with fixed pressure drop or fixed pumping power , 2013 .

[25]  S. Ergun,et al.  Fluid Flow through Randomly Packed Columns and Fluidized Beds , 1949 .

[26]  J. A. Esnaola,et al.  Experimental and numerical flow investigation of Stirling engine regenerator , 2014 .

[27]  H. Hausen Näherungsverfahren zur Berechnung des Wärmeaustausches in Regeneratoren , 1931 .

[28]  J. A. Esnaola,et al.  Numerical study of the pressure drop phenomena in wound woven wire matrix of a Stirling regenerator , 2013 .

[29]  A J Organ Solution of the Classic Thermal Regenerator Problem , 1994 .

[30]  Alan Burns,et al.  A REVIEW OF SOME EXPERIMENTAL INVESTIGATIONS ON REGENERATORS , 1984 .

[31]  N Ghodsipour,et al.  Experimental and sensitivity analysis of a rotary air preheater for the flue gas heat recovery , 2003 .

[32]  Jader R. Barbosa,et al.  Experimental evaluation of a Gd-based linear reciprocating active magnetic regenerator test apparatus ☆ , 2011 .

[33]  A. J. Willmott The regenerative heat exchanger computer representation , 1969 .

[34]  C. E. Iliffe Thermal Analysis of the Contra-Flow Regenerative Heat Exchanger , 1948 .

[35]  M. Mehl,et al.  Improve efficiency of thermal regenerators and VOCs abatement systems: An experimental and modeling study , 2007 .

[36]  Andrew Rowe,et al.  Experimental assessment of the thermal–hydraulic performance of packed-sphere oscillating-flow regenerators using water , 2014 .

[37]  Milad Malekipirbazari,et al.  Synthetic and physical characterization of phase change materials microencapsulated by complex coacervation for thermal energy storage applications , 2014 .

[38]  Tomme J. Lambertson Performance Factors of a Periodic-Flow Heat Exchanger , 1958, Journal of Fluids Engineering.

[39]  Anthony G. Dixon,et al.  Theoretical prediction of effective heat transfer parameters in packed beds , 1979 .

[40]  A. J. Willmott,et al.  Numerical acceleration of thermal regenerator simulations , 1977 .

[41]  H. Hausen,et al.  Über die Theorie des Wärmeaustausches in Regeneratoren . , 1929 .

[42]  D. Gunn,et al.  Heat transfer and axial dispersion in packed beds , 1974 .

[43]  S. M. Sadrameli,et al.  Simulation of fixed bed regenerative heat exchangers for flue gas heat recovery , 2004 .

[44]  Gilbert F. Froment,et al.  Heat transfer in packed beds , 1972 .