Timed Trace Alignment with Metric Temporal Logic over Finite Traces

Trace Alignment is a prominent problem in Declarative Process Mining, which consists in identifying a minimal set of modifications that a log trace (produced by a system under execution) requires in order to be made compliant with a temporal specification. In its simplest form, log traces are sequences of events from a finite alphabet and specifications are written in DECLARE, a strict sublanguage of linear-time temporal logic over finite traces (LTLf ). The best approach for trace alignment has been developed in AI, using cost-optimal planning, and handles the whole LTLf . In this paper, we study the timed version of trace alignment, where events are paired with timestamps and specifications are provided in metric temporal logic over finite traces (MTLf ), essentially a superlanguage of LTLf . Due to the infiniteness of timestamps, this variant is substantially more challenging than the basic version, as the structures involved in the search are (uncountably) infinite-state, and calls for a more sophisticated machinery based on alternating (timed) automata, as opposed to the standard finite-state automata sufficient for the untimed version. The main contribution of the paper is a provably correct, effective technique for Timed Trace Alignment that takes advantage of results on MTLf decidability as well as on reachability for well-structured transition systems.

[1]  Wil M. P. van der Aalst,et al.  An alignment-based framework to check the conformance of declarative process models and to preprocess event-log data , 2015, Inf. Syst..

[2]  Wil M. P. van der Aalst,et al.  Aligning Event Logs and Declarative Process Models for Conformance Checking , 2012, BPM.

[3]  Malte Helmert,et al.  The Fast Downward Planning System , 2006, J. Artif. Intell. Res..

[4]  Giuseppe De Giacomo,et al.  Linear Temporal Logic and Linear Dynamic Logic on Finite Traces , 2013, IJCAI.

[5]  Joël Ouaknine,et al.  On the decidability and complexity of Metric Temporal Logic over finite words , 2007, Log. Methods Comput. Sci..

[6]  Manfred Reichert,et al.  Time patterns for process-aware information systems , 2014, Requirements Engineering.

[7]  Giuseppe De Giacomo,et al.  On the Disruptive Effectiveness of Automated Planning for LTLf-Based Trace Alignment , 2017, AAAI.

[8]  Philippe Schnoebelen,et al.  Well-structured transition systems everywhere! , 2001, Theor. Comput. Sci..

[9]  Nils Klarlund,et al.  Mona: Monadic Second-Order Logic in Practice , 1995, TACAS.

[10]  W.M.P. van der Aalst,et al.  Business Process Management: A Comprehensive Survey , 2013 .

[11]  Jan Chomicki,et al.  Efficient checking of temporal integrity constraints using bounded history encoding , 1995, TODS.

[12]  Wil M. P. van der Aalst,et al.  Declarative workflows: Balancing between flexibility and support , 2009, Computer Science - Research and Development.

[13]  Ron Koymans,et al.  Specifying real-time properties with metric temporal logic , 1990, Real-Time Systems.

[14]  Alessandro Sperduti,et al.  Conformance checking based on multi-perspective declarative process models , 2015, Expert Syst. Appl..

[15]  Geguang Pu,et al.  Symbolic LTLf Synthesis , 2017, IJCAI.