Estimation of Reliability in a Multicomponent Stress-Strength Model Based on a Marshall-Olkin Bivariate Weibull Distribution

In this paper, we consider a system which has k s-independent and identically distributed strength components, and each component is constructed by a pair of s-dependent elements. These elements (X<sub>1</sub>,Y<sub>1</sub>),(X<sub>2</sub>,Y<sub>2</sub>),...,(X<sub>k</sub>,Y<sub>k</sub>) follow a Marshall-Olkin bivariate Weibull distribution, and each element is exposed to a common random stress T which follows a Weibull distribution. The system is regarded as operating only if at least s out of k (1 ≤ s ≤ k) strength variables exceed the random stress. The multicomponent reliability of the system is given by Rs,k=P (at least s of the (Z<sub>1</sub>,...,Z<sub>k</sub>) exceed T) where Z<sub>i</sub>=min(X<sub>i</sub>,Y<sub>i</sub>), i=1,...,k. We estimate Rs,k by using frequentist and Bayesian approaches. The Bayes estimates of Rs,k have been developed by using Lindley's approximation, and the Markov Chain Monte Carlo methods, due to the lack of explicit forms. The asymptotic confidence interval, and the highest probability density credible interval are constructed for R<sub>s,k</sub>. The reliability estimators are compared by using the estimated risks through Monte Carlo simulations.

[1]  G. Srinivasarao,et al.  ESTIMATION OF RELIABILITY IN MULTICOMPONENT STRESS- STRENGTH MODEL: LOG-LOGISTIC DISTRIBUTION , 2010 .

[2]  David D. Hanagal Estimation of reliability when stress is censored at strength , 1997 .

[3]  Debasis Kundu,et al.  Estimation of P[Y < X] for generalized exponential distribution , 2005 .

[4]  Serkan Eryilmaz On system reliability in stress-strength setup , 2010 .

[5]  Ming-Hui Chen,et al.  Monte Carlo Estimation of Bayesian Credible and HPD Intervals , 1999 .

[6]  E. S. Jeevanand Bayes estimation of P(X2 < X1) for a bivariate Pareto distribution , 1997 .

[7]  Pak Abbas,et al.  Estimation of System Reliability under Bivariate Rayleigh Distribution , 2009 .

[8]  Calyampudi R. Rao,et al.  Linear statistical inference and its applications , 1965 .

[9]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[10]  S. Kotz,et al.  The stress-strength model and its generalizations : theory and applications , 2003 .

[11]  A. M. Abd-Elfattah,et al.  Comparison of Estimators for Stress-Strength Reliability in the Gompertz Case , 2009 .

[12]  Md. Borhan Uddin,et al.  Estimation of reliability in a multicomponent stress-strength model , 1993 .

[13]  Filippo Domma,et al.  A copula-based approach to account for dependence in stress-strength models , 2013 .

[14]  I. Olkin,et al.  A Multivariate Exponential Distribution , 1967 .

[15]  F. J. Rubio,et al.  Nonparametric inference for P(X < Y ) with paired variables , 2012, Journal of Data Science.

[16]  Serkan Eryilmaz,et al.  On Stress-Strength Reliability with a Time-Dependent Strength , 2013 .

[17]  Debasis Kundu,et al.  Estimation of for Weibull Distributions , 2006 .

[18]  Serkan Eryilmaz Consecutive k-Out-of-n : G System in Stress-Strength Setup , 2008, Commun. Stat. Simul. Comput..

[19]  David D. Hanagal Estimation of system reliability , 1999 .

[20]  D. Kundu,et al.  Burr-XII Distribution Parametric Estimation and Estimation of Reliability of Multicomponent Stress-Strength , 2015 .

[21]  R. Kantam,et al.  Estimation of Reliability in Multicomponent Stress-Strength based On Inverse Rayleigh Distribution , 2013 .

[22]  Serkan Eryilmaz,et al.  Reliability Evaluation for a Multi-State System Under Stress-Strength Setup , 2011 .

[23]  M. Zuo,et al.  Optimal Reliability Modeling: Principles and Applications , 2002 .

[24]  Z. Birnbaum,et al.  A Distribution-Free Upper Confidence Bound for $\Pr \{Y < X\}$, Based on Independent Samples of $X$ and $Y$ , 1958 .

[25]  S. P. Mukherjee,et al.  Estimation of failure probability from a bivariate normal stress-strength distribution , 1985 .

[26]  Serkan Eryilmaz,et al.  Multivariate stress-strength reliability model and its evaluation for coherent structures , 2008 .

[27]  David D Hanagal Estimation of System Reliability in Multi- Component Series Stress-strength Models , .

[28]  Serkan Eryilmaz,et al.  A new perspective to stress–strength models , 2011 .

[29]  D. Lindley,et al.  Approximate Bayesian methods , 1980 .

[30]  David D. Hanagal Note on estimation of reliability under bivariate pareto stress-strength model , 1997 .

[31]  Seymour Geisser,et al.  Estimation of the Probability that Y , 1971 .

[32]  G. Srinivasa Rao Estimation of reliability in multicomponent stress-strength model based on Rayleigh distribution , 2013 .

[33]  Gadde Srinivasa Rao Estimation of Reliability in Multicomponent Stress-strength Based on Generalized Exponential Distribution Estimación de confiabilidad en la resistencia al estrés de multicomponentes basado en la distribución exponencial generalizada , 2012 .

[34]  Fatih Kızılaslan,et al.  Classical and Bayesian estimation of P(Y < X) for Kumaraswamy's distribution , 2014 .

[35]  Debasis Kundu,et al.  Estimation of P[Y, 2006, IEEE Transactions on Reliability.

[36]  G. S. Rao ESTIMATION OF RELIABILITY IN MULTICOMPONENT STRESS-STRENGTH BASED ON GENERALIZED INVERTED EXPONENTIAL DISTRIBUTION - , 2012 .

[37]  Z. Birnbaum On a Use of the Mann-Whitney Statistic , 1956 .