The genome of the freshwater monogonont rotifer Brachionus calyciflorus

Monogononta is the most speciose class of rotifers, with more than 2,000 species. The monogonont genus Brachionus is widely distributed at a global scale, and a few of its species are commonly used as ecological and evolutionary models to address questions related to aquatic ecology, cryptic speciation, evolutionary ecology, the evolution of sex and ecotoxicology. With the importance of Brachionus species in many areas of research, it is remarkable that the genome has not been characterized. This study aims to address this lacuna by presenting, for the first time, the whole‐genome assembly of the freshwater species Brachionus calyciflorus. The total length of the assembled genome was 129.6 Mb, with 1,041 scaffolds. The N50 value was 786.6 kb, and the GC content was 24%. A total of 16,114 genes were annotated with repeat sequences, accounting for 21% of the assembled genome. This assembled genome may form a basis for future studies addressing key questions on the evolution of monogonont rotifers. It will also provide the necessary molecular resources to mechanistically investigate ecophysiological and ecotoxicological responses.

[1]  S. Declerck,et al.  Monogonont rotifers as model systems for the study of micro-evolutionary adaptation and its eco-evolutionary implications , 2017, Hydrobiologia.

[2]  Shengfeng Huang,et al.  HaploMerger2: rebuilding both haploid sub-assemblies from high-heterozygosity diploid genome assembly , 2017, Bioinform..

[3]  Han Fang,et al.  GenomeScope: Fast reference-free genome profiling from short reads , 2016, bioRxiv.

[4]  Su-Jae Lee,et al.  Microplastic Size-Dependent Toxicity, Oxidative Stress Induction, and p-JNK and p-p38 Activation in the Monogonont Rotifer (Brachionus koreanus). , 2016, Environmental science & technology.

[5]  Su-Jae Lee,et al.  Adverse Effects, Expression of the Bk-CYP3045C1 Gene, and Activation of the ERK Signaling Pathway in the Water Accommodated Fraction-Exposed Rotifer. , 2016, Environmental science & technology.

[6]  M. Brehm,et al.  Integrative Taxonomy Recognizes Evolutionary Units Despite Widespread Mitonuclear Discordance: Evidence from a Rotifer Cryptic Species Complex. , 2016, Systematic biology.

[7]  Evgeny M. Zdobnov,et al.  BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs , 2015, Bioinform..

[8]  Jingjing Sha,et al.  Using population demographic parameters to assess impacts of two polybrominated diphenyl ethers (BDE-47, BDE-209) on the rotifer Brachionus plicatilis. , 2015, Ecotoxicology and environmental safety.

[9]  S. Diehl,et al.  Rapid adaptation of herbivore consumers to nutrient limitation: eco-evolutionary feedbacks to population demography and resource control. , 2015, Ecology letters.

[10]  Yi Wang,et al.  OrthoVenn: a web server for genome wide comparison and annotation of orthologous clusters across multiple species , 2015, Nucleic Acids Res..

[11]  Floriane Plard,et al.  Comparative Analysis of Transposable Elements Highlights Mobilome Diversity and Evolution in Vertebrates , 2015, Genome biology and evolution.

[12]  S. Ding,et al.  Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads , 2014, BMC Bioinformatics.

[13]  Tetsuya Hayashi,et al.  Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads , 2014, Genome research.

[14]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[15]  Alexey Gurevich,et al.  QUAST: quality assessment tool for genome assembles , 2013 .

[16]  M. Blaxter,et al.  Blobology: exploring raw genome data for contaminants, symbionts and parasites using taxon-annotated GC-coverage plots , 2013, Front. Genet..

[17]  D. Nelson,et al.  Expression pattern of entire cytochrome P450 genes and response of defensomes in the benzo[a]pyrene-exposed monogonont rotifer Brachionus koreanus. , 2013, Environmental science & technology.

[18]  H. Dahms,et al.  A new intertidal Brachionus and intrageneric phylogenetic relationships among Brachionus as revealed by allometry and CO1-ITS1 gene analysis , 2013, Zoological Studies.

[19]  Corinne Da Silva,et al.  Genomic evidence for ameiotic evolution in the bdelloid rotifer Adineta vaga , 2013, Nature.

[20]  Shilin Chen,et al.  FastUniq: A Fast De Novo Duplicates Removal Tool for Paired Short Reads , 2012, PloS one.

[21]  Nicholas H. Putnam,et al.  Insights into bilaterian evolution from three spiralian genomes , 2012, Nature.

[22]  H. A. Smith,et al.  Rapid evolution of sex frequency and dormancy as hydroperiod adaptations , 2012, Journal of evolutionary biology.

[23]  Qiang Wang,et al.  The oyster genome reveals stress adaptation and complexity of shell formation , 2012, Nature.

[24]  Guangrui Huang,et al.  HaploMerger: Reconstructing allelic relationships for polymorphic diploid genome assemblies , 2012, Genome research.

[25]  Mark Yandell,et al.  MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects , 2011, BMC Bioinformatics.

[26]  D A Kramerov,et al.  Origin and evolution of SINEs in eukaryotic genomes , 2011, Heredity.

[27]  N. Friedman,et al.  Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data , 2011, Nature Biotechnology.

[28]  Carl Kingsford,et al.  A fast, lock-free approach for efficient parallel counting of occurrences of k-mers , 2011, Bioinform..

[29]  Todd H. Oakley,et al.  The Ecoresponsive Genome of Daphnia pulex , 2011, Science.

[30]  H. Dahms,et al.  Ecotoxicology, ecophysiology, and mechanistic studies with rotifers. , 2011, Aquatic toxicology.

[31]  A. Gnirke,et al.  High-quality draft assemblies of mammalian genomes from massively parallel sequence data , 2010, Proceedings of the National Academy of Sciences.

[32]  C. Stelzer A first assessment of genome size diversity in Monogonont rotifers , 2010, Hydrobiologia.

[33]  György Abrusán,et al.  TEclass - a tool for automated classification of unknown eukaryotic transposable elements , 2009, Bioinform..

[34]  M. Borodovsky,et al.  Gene prediction in novel fungal genomes using an ab initio algorithm with unsupervised training. , 2008, Genome research.

[35]  M. Meselson,et al.  Evidence for degenerate tetraploidy in bdelloid rotifers , 2008, Proceedings of the National Academy of Sciences.

[36]  David Haussler,et al.  Using native and syntenically mapped cDNA alignments to improve de novo gene finding , 2008, Bioinform..

[37]  Sakakura Yoshitaka,et al.  Development of rotifer strains with useful traits for rearing fish larvae(Abstracts of Research Report) , 2008 .

[38]  Y. Sakakura,et al.  Development of rotifer strains with useful traits for rearing fish larvae , 2007 .

[39]  Keith Bradnam,et al.  CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes , 2007, Bioinform..

[40]  B. Charlesworth Evidence for evolution , 2006, Nature.

[41]  J. Kubanek,et al.  A protein signal triggers sexual reproduction in Brachionus plicatilis (Rotifera) , 2006 .

[42]  J. J. Gilbert,et al.  Brachionus calyciflorus is a Species Complex: Mating Behavior and Genetic Differentiation Among Four Geographically Isolated Strains , 2005, Hydrobiologia.

[43]  Ian Korf,et al.  Gene finding in novel genomes , 2004, BMC Bioinformatics.

[44]  S. Watabe,et al.  The molecular mechanisms of life history alterations in a rotifer: a novel approach in population dynamics. , 2003, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[45]  M. Serra,et al.  Coexistence of cryptic rotifer species: ecological and genetic characterisation of Brachionus plicatilis , 2003 .

[46]  T. Snell,et al.  Gene Expression Profiling in Ecotoxicology , 2003, Ecotoxicology.

[47]  Stephen P Ellner,et al.  Evolution as a critical component of plankton dynamics , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[48]  T. Snell,et al.  Induction of sexual reproduction in Brachionus plicatilis (Monogononta, Rotifera) by a density‐dependent chemical cue , 2003 .

[49]  G. Carvalho,et al.  SPECIATION IN ANCIENT CRYPTIC SPECIES COMPLEXES: EVIDENCE FROM THE MOLECULAR PHYLOGENY OF BRACHIONUS PLICATILIS (ROTIFERA) , 2002, Evolution; international journal of organic evolution.

[50]  W. Carroll,et al.  GENE EXPRESSION PROFILING , 2001 .

[51]  B. Preston,et al.  Use of freshwater rotifer Brachionus calyciflorus in screening assay for potential endocrine disruptors , 2000 .

[52]  M. Serra,et al.  Patterns of genetic differentiation in resting egg banks of a rotifer species complex in Spain , 2000 .

[53]  M Meselson,et al.  Evidence for the evolution of bdelloid rotifers without sexual reproduction or genetic exchange. , 2000, Science.

[54]  Stephen M. Mount,et al.  The genome sequence of Drosophila melanogaster. , 2000, Science.

[55]  N. Munuswamy,et al.  Mass production and preservation of the resting eggs of the euryhaline rotifer Brachionus plicatilis and B. rotundiformis , 1997 .

[56]  T. Snell,et al.  Morphology, reproduction, genetics, and mating behavior of small, tropical marine Brachionus strains (Rotifera) , 1995 .

[57]  T. Snell,et al.  Rotifers in ecotoxicology: a review , 1995, Hydrobiologia.

[58]  T. Snell,et al.  Comparative toxicant sensitivity of sexual and asexual reproduction in the rotifer Brachionus calyciflorus , 1995 .

[59]  H. Arndt Rotifers as predators on components of the microbial web (bacteria, heterotrophic flagellates, ciliates) — a review , 1993, Hydrobiologia.

[60]  Colin R. Janssen,et al.  Acute toxicity tests using rotifers. IV. Effects of cyst age, temperature, and salinity on the sensitivity of Brachionus calyciflorus. , 1991, Ecotoxicology and environmental safety.

[61]  Harihar Bhawan DEPARTMENT OF AGRICULTURE. , 1880, Science.

[62]  Expression Pattern , 2020, Encyclopedia of Behavioral Medicine.

[63]  H. Dahms,et al.  Rotifers in Ecotoxicology , 2017 .

[64]  Russ B. Altman,et al.  Genome Analysis , 2011, Bioinform..

[65]  Fabio Stella,et al.  Additional file 6 , 2009 .

[66]  Koen Martens,et al.  Lost sex : the evolutionary biology of parthenogenesis , 2009 .

[67]  M. Serra,et al.  Sex Loss in Monogonont Rotifers , 2009 .

[68]  H. Segers Global diversity of rotifers (Rotifera) in freshwater , 2007, Hydrobiologia.

[69]  J. Townsend,et al.  NIH Public Access Author Manuscript , 2006 .

[70]  Colin R. Janssen,et al.  Acute Toxicity Tests Using Rotifers , 2003 .

[71]  S. Hapugoda,et al.  Evidence for the Evolution of Bdelloid Rotifers Without Sexual Reproduction or Genetic Exchange , 2000 .

[72]  J. Berg Genome sequence of the nematode C. elegans: a platform for investigating biology. , 1998, Science.

[73]  T. Snell,et al.  Acute toxicity bioassays using rotifers. I. A test for brackish and marine environments with Brachionus plicatilis , 1989 .

[74]  T. Snell,et al.  Acute toxicity bioassays using rotifers. II. A freshwater test with Brachionus rubens , 1989 .