Size-Effect Testing of Cohesive Fracture Parameters and Nonuniqueness of Work-of-Fracture Method

The cohesive crack model has been widely accepted as the best compromise for the analysis of fracture of concrete and other quasibrittle materials. The softening stress-separation law of this model is now believed to be best described as a bilinear curve characterized by four parameters: the initial and total fracture energies Gf and GF, the tensile strength ft′, and the knee-point ordinate σ1. The classical work-of-fracture test of a notched beam of one size can deliver a clear result only for GF. Here it is shown computationally that the same complete load-deflection curve can be closely approximated with stress-separation curves in which the ft′ values differ by 77% and Gf values by 68%. It follows that the work-of-fracture test alone cannot provide an unambiguous basis for quasibrittle fracture analysis. It is found, however, that if this test is supplemented by size-effect testing, all four cohesive crack model parameters can be precisely identified and the fracture analysis of structures becomes una...

[1]  G. I. Barenblatt Scaling: Self-similarity and intermediate asymptotics , 1996 .

[2]  Junn Nakayama,et al.  Direct Measurement of Fracture Energies of Brittle Heterogeneous Materials , 1965 .

[3]  Z. Bažant,et al.  Fracture and Size Effect in Concrete and Other Quasibrittle Materials , 1997 .

[4]  G. I. Barenblatt The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks , 1959 .

[5]  G. Cusatis,et al.  Cohesive crack analysis of size effect , 2009 .

[6]  Zdenek P. Bazant,et al.  Size effect on diagonal shear failure of beams without stirrups , 1991 .

[7]  Ek P. Ba Scaling of quasibrittle fracture: asymptotic analysis , 1997 .

[8]  John R. Rice,et al.  Mathematical analysis in the mechanics of fracture , 1968 .

[9]  Z. Bažant,et al.  Scaling of quasibrittle fracture: asymptotic analysis , 1997 .

[10]  P. Petersson Crack growth and development of fracture zones in plain concrete and similar materials , 1981 .

[11]  W. Weibull A Statistical Distribution Function of Wide Applicability , 1951 .

[12]  Surendra P. Shah,et al.  Size-effect method for determining fracture energy and process zone size of concrete , 1990 .

[13]  H. Tattersall,et al.  The work of fracture and its measurement in metals, ceramics and other materials , 1966 .

[14]  Z. Bažant,et al.  Size effect tests and fracture characteristics of aluminum , 1987 .

[15]  P. F. Walsh Crack initiation in plain concrete , 1976 .

[16]  Zdenek P. Bazant,et al.  Instability, Ductility, and Size Effect in Strain-Softening Concrete , 1978 .

[17]  Z. Bažant,et al.  Crack band theory for fracture of concrete , 1983 .

[18]  Z. Bažant,et al.  Scaling of structural strength , 2003 .

[19]  E. Brühwiler,et al.  Fracture energy and strain softening of concrete as determined by means of compact tension specimens , 1988 .

[20]  Rilem Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams , 1985 .

[21]  H. Hartmann Handbuch der Physik. Herausgegeben von S. Flügge. Bd. V, Teil 1: Prinzipien der Quantentheorie 1, VI. 376 Seiten mit 7 Figuren. Springer Verlag, Berlin‐Göttingen‐Heidelberg 1958. Preis: DM 90,—. , 1961, Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie.

[22]  Z. Bažant Size Effect in Blunt Fracture: Concrete, Rock, Metal , 1984 .

[23]  Zdeněk P. Bažant,et al.  Problems with Hu-Duan Boundary Effect Model and Its Comparison to Size-Shape Effect Law for Quasi-Brittle Fracture , 2010 .

[24]  Z. Bažant,et al.  Determination of fracture energy, process zone longth and brittleness number from size effect, with application to rock and conerete , 1990 .

[25]  G. I. Barenblatt THE MATHEMATICAL THEORY OF EQUILIBRIUM CRACKS IN BRITTLE FRACTURE , 1962 .

[26]  Z. Bažant,et al.  Determination of Fracture Energy from Size Effect and Brittleness Number , 1987 .

[27]  J. Glucklich Fracture of Plain Concrete , 1963 .

[28]  高橋 秀明,et al.  Fracture toughness and fracture energy : test methods for concrete and rock , 1989 .

[29]  Zdeněk P. Bažant,et al.  Statistical prediction of fracture parameters of concrete and implications for choice of testing standard , 2002 .

[30]  Alberto Carpinteri,et al.  Quasibrittle fracture scaling and size effect , 2004 .

[31]  A. Hillerborg,et al.  Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements , 1976 .

[32]  W. Weibull,et al.  The phenomenon of rupture in solids , 1939 .

[33]  Rilem FMC 1 Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams , 1985 .

[34]  Zdeněk P. Bažant,et al.  Choice of standard fracture test for concrete and its statistical evaluation , 2002 .

[35]  Mohammad Taghi Kazemi,et al.  Size Effect in Fracture of Ceramics and Its Use To Determine Fracture Energy and Effective Process Zone Length , 1990 .