Multilayer antireflection coating design for GaAs0.69P0.31/Si dual-junction solar cells

Abstract In this paper, we systematically investigate the use of multilayer antireflection coatings (ARC) on GaAs 0.69 P 0.31 /Si dual-junction solar cells for achieving broadband reflection suppression. We incorporate dispersion, absorption, and both coherent and incoherent interference, by modeling the solar cell as a multilayer medium of thin films and a substrate, using the transfer matrix method. The analytical model is verified through reflectance measurements on a GaAs (1 −x ) P x /GaP stack. Our results show that optimized double- and triple-layer ARCs can minimize reflectance to below 5% within the spectral range of ∼400–945 nm, with the latter maintaining this performance over a broader spectrum of 390–1000 nm, in comparison to 25–45% reflectance for the bare solar cell.

[1]  A. Chikouche,et al.  Design and simulation of antireflection coating systems for optoelectronic devices : Application to silicon solar cells , 1998 .

[2]  E. Fred Schubert,et al.  Enhanced Omnidirectional Photovoltaic Performance of Solar Cells Using Multiple‐Discrete‐Layer Tailored‐ and Low‐Refractive Index Anti‐Reflection Coatings , 2013 .

[3]  E. Fitzgerald,et al.  Dual junction GaInP/GaAs solar cells grown on metamorphic SiGe/Si substrates with high open circuit voltage , 2006, IEEE Electron Device Letters.

[4]  Y. Joung,et al.  SiC formation for a solar cell passivation layer using an RF magnetron co-sputtering system , 2012, Nanoscale Research Letters.

[5]  Shun Lien Chuang,et al.  Physics of Photonic Devices , 2009 .

[6]  J. R. DeVore,et al.  Refractive Indices of Rutile and Sphalerite , 1951 .

[7]  G. Pitt,et al.  The electrical properties of GaAs1-xpx alloys from a high-pressure experiment , 1975 .

[8]  Sarah R. Kurtz,et al.  Modeling of two‐junction, series‐connected tandem solar cells using top‐cell thickness as an adjustable parameter , 1990 .

[9]  K. Vos,et al.  Reflectance and electroreflectance of TiO2 single crystals. I. Optical spectra , 1977 .

[10]  I. Pereyra,et al.  Wide optical band gap window layers for solar cells , 2001 .

[11]  Vincent Aimez,et al.  Antireflection Coating Design for Triple-Junction III–V/Ge High-Efficiency Solar Cells Using Low Absorption PECVD Silicon Nitride , 2012, IEEE Journal of Photovoltaics.

[12]  Gang Chen,et al.  Analysis of Optical Absorption in Silicon Nanowire Solar Cells , 2007 .

[13]  Mantu K. Hudait,et al.  High efficiency GaAs-on-Si solar cells with high V/sub oc/ using graded GeSi buffers , 2000, Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference - 2000 (Cat. No.00CH37036).

[14]  S. A. Ringel,et al.  Toward metamorphic multijunction GaAsP/Si photovoltaics grown on optimized GaP/Si virtual substrates using anion-graded GaAsyP1-y buffers , 2009, 2009 34th IEEE Photovoltaic Specialists Conference (PVSC).

[15]  J. Mayer,et al.  Structure and electronic properties of μc-SiC:H for photovoltaic applications , 2011 .

[16]  SiO2/ZnSe anti-reflection coating for solar cells , 2013, 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC).

[17]  Junsin Yi,et al.  Low cost CBD ZnS antireflection coating on large area commercial mono-crystalline silicon solar cells , 2004 .

[18]  J. Greffet,et al.  Dielectric gratings for wide-angle, broadband absorption by thin film photovoltaic cells , 2010 .

[19]  B. Harbecke,et al.  Coherent and incoherent reflection and transmission of multilayer structures , 1986 .

[20]  M.A. Smith,et al.  Investigations of high-performance GaAs solar cells grown on Ge-Si/sub 1-x/Ge/sub x/-Si substrates , 2005, IEEE Transactions on Electron Devices.

[21]  V. G. Litovchenko,et al.  Silicon solar cells with antireflection diamond-like carbon and silicon carbide films , 2002 .

[22]  Charalambos C. Katsidis,et al.  General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference. , 2002, Applied optics.

[23]  Q. Shen,et al.  Light-trapping design of graphene transparent electrodes for efficient thin-film silicon solar cells. , 2012, Applied optics.

[24]  Simulation and fabrication of SiO2/graded-index TiO2 antireflection coating for triple-junction GaAs solar cells by using the hybrid deposition process , 2014 .

[25]  A. Norman,et al.  Lattice-mismatched GaAsP Solar Cells Grown on Silicon by OMVPE , 2006, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[26]  Andrew M. Carlin,et al.  Characterization of Metamorphic GaAsP/Si Materials and Devices for Photovoltaic Applications , 2010, IEEE Transactions on Electron Devices.

[27]  Double layer antireflection coating and window optimization for GaAsP/SiGe tandem on Si , 2014, 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC).

[28]  Gang Chen,et al.  Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications. , 2007, Nano letters.

[29]  H. Macleod,et al.  Thin-Film Optical Filters , 1969 .

[30]  E. Schubert,et al.  Design of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials by genetic algorithm. , 2008, Optics express.

[31]  Martin A. Green,et al.  Optimized antireflection coatings for high-efficiency silicon solar cells , 1991 .

[32]  Dong-Sing Wuu,et al.  Tri-layer antireflection coatings (SiO2/SiO2–TiO2/TiO2) for silicon solar cells using a sol–gel technique , 2006 .

[33]  D. Aiken,et al.  High performance anti-reflection coatings for broadband multi-junction solar cells , 2000 .

[34]  Gang Xu,et al.  Design, formation and characterization of a novel multifunctional window with VO2 and TiO2 coatings , 2003 .