Mesh quality metrics for isogeometric Bernstein–Bézier discretizations

High-order finite element methods harbor the potential to deliver improved accuracy per degree of freedom versus low-order methods. Their success, however, hinges upon the use of a curvilinear mesh of not only sufficiently high accuracy but also sufficiently high quality. In this paper, theoretical results are presented quantifying the impact of mesh parameterization on the accuracy of a high-order finite element approximation, and a formal definition of shape regularity is introduced for curvilinear meshes based on these results. This formal definition of shape regularity in turn inspires a new set of quality metrics for curvilinear finite elements. Computable bounds are established for these quality metrics using the Bernstein-Bezier form, and a new curvilinear mesh optimization procedure is proposed based on these bounds. Numerical results confirming the importance of shape regularity in the context of high-order finite element methods are presented, and numerical results demonstrating the promise of the proposed curvilinear mesh optimization procedure are also provided. The theoretical results in this paper apply to any piecewise-polynomial or piecewise-rational finite element method posed on a mesh of polynomial or rational mapped simplices and hypercubes. As such, they apply not only to classical continuous Galerkin finite element methods but also to discontinuous Galerkin finite element methods and even isogeometric methods based on NURBS, T-splines, or hierarchical B-splines.

[1]  A. U.S.,et al.  Curved Mesh Generation and Mesh Refinement using Lagrangian Solid Mechanics , 2009 .

[2]  Brian T. Helenbrook,et al.  Mesh deformation using the biharmonic operator , 2003 .

[3]  Xevi Roca,et al.  Optimization of a regularized distortion measure to generate curved high‐order unstructured tetrahedral meshes , 2015 .

[4]  A. J. Gil,et al.  A unified approach for a posteriori high-order curved mesh generation using solid mechanics , 2016 .

[5]  Christophe Geuzaine,et al.  Robust untangling of curvilinear meshes , 2013, J. Comput. Phys..

[6]  T. Hughes,et al.  Solid T-spline construction from boundary representations for genus-zero geometry , 2012 .

[8]  T. Hughes,et al.  ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .

[9]  Pablo Lamata,et al.  Quality Metrics for High Order Meshes: Analysis of the Mechanical Simulation of the Heart Beat , 2013, IEEE Transactions on Medical Imaging.

[10]  Xevi Roca,et al.  Defining Quality Measures for High-Order Planar Triangles and Curved Mesh Generation , 2011, IMR.

[11]  Songtao Xia,et al.  Generating high-quality high-order parameterization for isogeometric analysis on triangulations , 2018 .

[12]  K. Morgan,et al.  The generation of arbitrary order curved meshes for 3D finite element analysis , 2013 .

[13]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[14]  Hendrik Speleers,et al.  Optimizing domain parameterization in isogeometric analysis based on Powell-Sabin splines , 2015, J. Comput. Appl. Math..

[15]  A. R. Mitchell,et al.  Curved elements in the finite element method , 1974 .

[16]  Craig Michoski,et al.  Foundations of the blended isogeometric discontinuous Galerkin (BIDG) method , 2016 .

[17]  Paul-Louis George,et al.  Construction of tetrahedral meshes of degree two , 2012 .

[18]  Xevi Roca,et al.  Distortion and quality measures for validating and generating high-order tetrahedral meshes , 2014, Engineering with Computers.

[19]  John A. Evans,et al.  Isogeometric triangular Bernstein–Bézier discretizations: Automatic mesh generation and geometrically exact finite element analysis , 2016 .

[20]  B. Simeon,et al.  A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .

[21]  Onkar Sahni,et al.  Adaptive boundary layer meshing for viscous flow simulations , 2008, Engineering with Computers.

[22]  Sailkat Dey,et al.  Curvilinear Mesh Generation in 3D , 1999, IMR.

[23]  J. Bramble,et al.  Estimation of Linear Functionals on Sobolev Spaces with Application to Fourier Transforms and Spline Interpolation , 1970 .

[24]  André Galligo,et al.  High-quality construction of analysis-suitable trivariate NURBS solids by reparameterization methods , 2014 .

[25]  P. G. Ciarlet,et al.  General lagrange and hermite interpolation in Rn with applications to finite element methods , 1972 .

[26]  John A. Evans,et al.  Isogeometric unstructured tetrahedral and mixed-element Bernstein–Bézier discretizations , 2017 .

[27]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[28]  G. Constantine,et al.  A Multivariate Faa di Bruno Formula with Applications , 1996 .

[29]  Régis Duvigneau,et al.  Optimal analysis-aware parameterization of computational domain in 3D isogeometric analysis , 2013, Comput. Aided Des..

[30]  Tzanio V. Kolev,et al.  The Target-Matrix Optimization Paradigm for High-Order Meshes , 2018, SIAM J. Sci. Comput..

[31]  J. M. Cascón,et al.  A new approach to solid modeling with trivariate T-splines based on mesh optimization , 2011 .

[32]  W. Boehm,et al.  Bezier and B-Spline Techniques , 2002 .

[33]  I. Babuska,et al.  ON THE ANGLE CONDITION IN THE FINITE ELEMENT METHOD , 1976 .

[34]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[35]  Roland Glowinski,et al.  An introduction to the mathematical theory of finite elements , 1976 .

[36]  M. Zlámal Curved Elements in the Finite Element Method. I , 1973 .

[37]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[38]  S. Sherwin,et al.  Mesh generation in curvilinear domains using high‐order elements , 2002 .

[39]  Jens Gravesen,et al.  Planar Parametrization in Isogeometric Analysis , 2012, MMCS.

[40]  Xiaoping Qian,et al.  Isogeometric analysis with Bézier tetrahedra , 2017 .

[41]  M. Shephard,et al.  Curved boundary layer meshing for adaptive viscous flow simulations , 2010 .

[42]  Tom Lyche,et al.  Analysis-aware modeling: Understanding quality considerations in modeling for isogeometric analysis , 2010 .

[43]  P. G. Ciarlet,et al.  Interpolation theory over curved elements, with applications to finite element methods , 1972 .

[44]  J. H. Bramble,et al.  Bounds for a class of linear functionals with applications to Hermite interpolation , 1971 .

[45]  D. A. Field Laplacian smoothing and Delaunay triangulations , 1988 .

[46]  Christophe Geuzaine,et al.  Geometrical validity of curvilinear finite elements , 2011, J. Comput. Phys..