Thermo-Mechanical Fatigue Life Prediction: A Critical Review

Abstract : Improved prediction methods for thermo-mechanical fatigue life will assist in reducing life cycle costs and increasing the availability of the hot section components in aircraft engines. Literature on thermo-mechanical fatigue life assessment is reviewed in this report, with an emphasis on the life prediction models applied in aircraft engines. Successful areas of application of these life prediction models are addressed as well as their limitations. Published quantitative thermo-mechanical fatigue life data for selected hot section materials is also summarised. The review concludes by indicating areas where knowledge is deficient and where further research would be most beneficial.

[1]  E. G. Ellison,et al.  A combined deformation map-ductility exhaustion approach to creep-fatigue analysis , 1981 .

[2]  E. W. C. Wilkins,et al.  Cumulative damage in fatigue , 1956 .

[3]  E. Ellison A Review of the Interaction of Creep and Fatigue , 1969 .

[4]  Robert Miller,et al.  Life modeling of thermal barrier coatings for aircraft gas turbine engines , 1989 .

[5]  S Taira,et al.  Relationship Between Thermal Fatigue and Low-cycle Fatigue at Elevated Temperature , 1973 .

[6]  G. Halford,et al.  The strainrange partitioning behavior of an advanced gas turbine disk alloy, AF2-1DA , 1979 .

[7]  D. J. White,et al.  Observations of the Effect of Creep Relaxation on High-Strain Fatigue: , 1966 .

[8]  Guk-Rwang Won American Society for Testing and Materials , 1987 .

[9]  Gr Leverant,et al.  Thermal-Mechanical Fatigue Crack Propagation in Nickel- and Cobalt-Base Superalloys Under Various Strain-Temperature Cycles , 1973 .

[10]  G. R. Halford,et al.  Temperature effects on the strainrange partitioning approach for creep-fatigue analysis , 1972 .

[11]  Ramaswamy Viswanathan,et al.  Damage Mechanisms and Life Assessment of High Temperature Components , 1989 .

[12]  D. Miller,et al.  Materials Response to Thermal-Mechanical Strain Cycling , 1987 .

[13]  D. A. Spera,et al.  Comparison of experimental and theoretical thermal fatigue lives for five nickel-base alloys. , 1972 .

[14]  R. S. Nelson,et al.  Fatigue Life Prediction Modeling for Turbine Hot Section Materials , 1989 .

[15]  G. Halford Brief summary of the evolution of high-temperature creep-fatigue life prediction models for crack initiation , 1993 .

[16]  Gary R. Halford,et al.  Procedures for characterizing an alloy and predicting cyclic life with the total strain version of Strainrange Partitioning , 1989 .

[17]  S. Manson,et al.  Creep-fatigue analysis by strain-range partitioning. , 1971 .

[18]  Martin Rh,et al.  Composite Materials: Fatigue and Fracture, Fourth Volume , 1993 .

[19]  Akito Nitta,et al.  IGTC-99 THE CHARACTERISTICS OF THERMAL-MECHANICAL FATIGUE STRENGTH IN SUPERALLOYS FOR GAS TURBINE(Session C-5 Material and Manufacturing II) , 1984 .

[20]  J. F. Saltsman,et al.  Proposed framework for thermomechanical life modeling of metal matrix composites , 1993 .

[21]  Gary R. Halford,et al.  Life prediction of thermomechanical fatigue using total strain version of strainrange partitioning (SRP): A proposal , 1988 .

[22]  B. Majumdar,et al.  Thermomechanical Fatigue of a Quasi-Isotropic Metal Matrix Composite , 1991 .

[23]  Robert C. Bill,et al.  Bithermal fatigue - A link between isothermal and thermomechanical fatigue , 1988 .

[24]  Robert C. Bill,et al.  Preliminary study of thermomechanical fatigue of polycrystalline MAR-M 200 , 1984 .

[25]  M. Nazmy High Temperature Low Cycle Fatigue of IN 738 and Application of Strain Range Partitioning , 1983 .

[26]  S. Manson The Challenge to Unify Treatment of High Temperature Fatigue—A Partisan Proposal Based on Strainrange Partitioning , 1972 .

[27]  V. Moreno Combustor liner durability analysis , 1981 .

[28]  D. Coutsouradis,et al.  High temperature alloys for gas turbines , 1978 .

[29]  G. Pluvinage,et al.  LIFETIME PREDICTION ON Cr-Mo-V AND 316L STEELS UNDER THERMAL AND MECHANICAL CYCLING , 1990 .

[30]  Daniel E. Sokolowski,et al.  Aircraft engine hot section technology: An overview of the HOST Project , 1987 .

[31]  W. J. Ostergren,et al.  A Uniaxial Damage Accumulation Law for Time-Varying Loading Including Creep-Fatigue Interaction , 1979 .

[32]  G B Thomas,et al.  Low Cycle Fatigue and Life Prediction Methods , 1982 .

[33]  E. G. Ellison,et al.  Fracture and life prediction under thermal-mechanical strain cycling , 1994 .

[34]  G. Halford,et al.  Strainrange partitioning: A tool for characterizing high temperature low cycle fatigue. [materials fatigue test] , 1975 .

[35]  G. R. Halford,et al.  Low-cycle thermal fatigue , 1986 .

[36]  Jl Chaboche,et al.  Lifetime Predictions and Cumulative Damage under High-Temperature Conditions , 1982 .

[37]  Henry L. Bernstein An Evaluation of Four Current Models to Predict the Creep-Fatigue Interaction in Rene 95 , 1979 .

[38]  Shuji Taira,et al.  Lifetime of Structures Subjected to Varying Load and Temperature , 1962 .

[39]  Luc Rémy,et al.  Evaluation of Life Prediction Methods in High Temperature Fatigue , 1988 .

[40]  C. Wüthrich,et al.  THE PREDICTIVE CAPABILITY OF THREE HIGH TEMPERATURE LOW CYCLE FATIGUE MODELS IN THE ALLOY IN-738 , 1984 .

[41]  L. Coffin,et al.  Concept of frequency separation in life prediction for time-dependent fatigue , 1976 .

[42]  Tarun Goswami A New Creep-Fatigue Life Prediction Model , 1996 .