Relativistic effects on information measures for hydrogen-like atoms

Position and momentum information measures are evaluated for the ground state of the relativistic hydrogen-like atoms. Consequences of the fact that the radial momentum operator is not self-adjoint are explicitly studied, exhibiting fundamental shortcomings of the conventional uncertainty measures in terms of the radial position and momentum variances. The Shannon and Renyi entropies, the Fisher information measure, as well as several related information measures, are considered as viable alternatives. Detailed results on the onset of relativistic effects for low nuclear charges, and on the extreme relativistic limit, are presented. The relativistic position density decays exponentially at large r, but is singular at the origin. Correspondingly, the momentum density decays as an inverse power of p. Both features yield divergent Renyi entropies away from a finite vicinity of the Shannon entropy. While the position space information measures can be evaluated analytically for both the nonrelativistic and the relativistic hydrogen atom, this is not the case for the relativistic momentum space. Some of the results allow interesting insight into the significance of recently evaluated Dirac-Fock vs. Hartree-Fock complexity measures for many-electron neutral atoms.

[1]  J. S. Dehesa,et al.  Fisher information of D-dimensional hydrogenic systems in position and momentum spaces , 2006 .

[2]  Ricardo López-Ruiz,et al.  A Statistical Measure of Complexity , 1995, ArXiv.

[3]  J. S. Dehesa,et al.  Information-theoretic measures for Morse and Pöschl–Teller potentials , 2006 .

[4]  K. Sen,et al.  An information-theoretical estimate of the exchange parameter in Xα theory , 1990 .

[5]  H. E. Montgomery,et al.  Statistical complexity and Fisher–Shannon information measure of H+2 , 2008 .

[6]  L. Ballentine,et al.  Probabilistic and Statistical Aspects of Quantum Theory , 1982 .

[7]  R. Carroll Fluctuations, Information, Gravity and the Quantum Potential , 2006 .

[8]  K Ch Chatzisavvas,et al.  Information entropy, information distances, and complexity in atoms. , 2005, The Journal of chemical physics.

[9]  A. J. Stam Some Inequalities Satisfied by the Quantities of Information of Fisher and Shannon , 1959, Inf. Control..

[10]  Annik Vivier Bunge,et al.  Roothaan-Hartree-Fock Ground-State Atomic Wave Functions: Slater-Type Orbital Expansions and Expectation Values for Z = 2-54 , 1993 .

[11]  J. Lombardi Hydrogen atom in the momentum representation , 1980 .

[12]  P. Morse,et al.  Methods of theoretical physics , 1955 .

[13]  V. Majerník,et al.  Entropic uncertainty relations for the infinite well , 1997 .

[14]  J. Linnett,et al.  Quantum mechanics , 1975, Nature.

[15]  P. Geerlings,et al.  Complexity of Dirac–Fock atom increases with atomic number , 2007 .

[16]  S. Dong,et al.  Radial position–momentum uncertainties for the Dirac hydrogen-like atoms , 2006 .

[17]  J. S. Dehesa,et al.  The Fisher-Shannon information plane, an electron correlation tool. , 2004, The Journal of chemical physics.

[18]  I. Bialynicki-Birula,et al.  Uncertainty relations for information entropy in wave mechanics , 1975 .

[19]  A. Rubinowicz Solution of the System of integral Equations in Dirac's One-Electron Problem in Momentum Representation , 1948 .

[20]  The non-self-adjointness of the radial momentum operator in n dimensions , 2000, math-ph/0009016.

[21]  Rory A. Fisher,et al.  Theory of Statistical Estimation , 1925, Mathematical Proceedings of the Cambridge Philosophical Society.

[22]  C. Kuo The uncertainties in radial position and radial momentum of an electron in the non-relativistic hydrogen-like atom , 2005 .

[23]  S. Dehesaa,et al.  Quantum information entropies and orthogonal polynomials , 2001 .

[24]  Ricardo López-Ruiz,et al.  Features of the extension of a statistical measure of complexity to continuous systems. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  L. Goddard Information Theory , 1962, Nature.

[26]  Robert B. Ash,et al.  Information Theory , 2020, The SAGE International Encyclopedia of Mass Media and Society.

[27]  M. Grypeos,et al.  The HVT Technique and the "Uncertainty" Relation for Central , 2004, HNPS Advances in Nuclear Physics.

[28]  Piotr Garbaczewski,et al.  Differential Entropy and Dynamics of Uncertainty , 2004 .

[29]  Yáñez,et al.  Position and momentum information entropies of the D-dimensional harmonic oscillator and hydrogen atom. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[30]  Iwo Bialynicki-Birula Formulation of the uncertainty relations in terms of the Rényi entropies , 2006 .

[31]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[32]  C. P. Panos,et al.  Comparison of SDL and LMC measures of complexity: Atoms as a testbed , 2007 .

[33]  G. Jd Quantum solutions and classical limits for strong Coulomb fields. , 1986 .

[34]  K. Sen,et al.  Information entropies for eigendensities of homogeneous potentials. , 2006, The Journal of chemical physics.

[35]  Paul W. Ayers,et al.  Information Theory, the Shape Function, and the Hirshfeld Atom , 2006 .

[36]  B. Frieden Science from Fisher Information , 2004 .

[37]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[38]  C. R. Rao,et al.  Linear Statistical Inference and its Applications , 1968 .

[39]  R. P. Sagar,et al.  Local correlation measures in atomic systems. , 2005, The Journal of chemical physics.

[40]  W. Heisenberg Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik , 1927 .

[41]  Jesús S. Dehesa,et al.  The Fisher information of single-particle systems with a central potential , 2005 .

[42]  J. C. Angulo,et al.  Atomic complexity measures in position and momentum spaces. , 2008, The Journal of chemical physics.

[43]  K. Sen Characteristic features of Shannon information entropy of confined atoms. , 2005, The Journal of chemical physics.

[44]  Evgueni A. Haroutunian,et al.  Information Theory and Statistics , 2011, International Encyclopedia of Statistical Science.

[45]  B. Tsapline Expectation values in one- and two-electron atomic systems , 1970 .

[46]  J. S. Dehesa,et al.  Information-theoretic measures of hyperspherical harmonics , 2007 .

[47]  Charles F. Hockett,et al.  A mathematical theory of communication , 1948, MOCO.

[48]  E. H. Kennard Zur Quantenmechanik einfacher Bewegungstypen , 1927 .