Semantical Principles in the Modal Logic of Coalgebras

Coalgebras for a functor on the category of sets subsume many formulations of the notion of transition system, including labelled transition systems, Kripke models, Kripke frames and many types of automata. This paper presents a multimodal language which is bisimulation invariant and (under a natural completeness condition) expressive enough to characterise elements of the underlying state space up to bisimulation. Like Moss' coalgebraic logic, the theory can be applied to an arbitrary signature functor on the category of sets. Also, an upper bound for the size of conjunctions and disjunctions needed to obtain characteristic formulas is given.

[1]  Martin Rößiger,et al.  Coalgebras and Modal Logic , 2000, CMCS.

[2]  Gordon D. Plotkin,et al.  The category-theoretic solution of recursive domain equations , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[3]  D. Turi,et al.  Functional Operational Semantics and its Denotational Dual , 1996 .

[4]  Jan J. M. M. Rutten,et al.  Universal coalgebra: a theory of systems , 2000, Theor. Comput. Sci..

[5]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[6]  B. Jacobs,et al.  A tutorial on (co)algebras and (co)induction , 1997 .

[7]  Alexander Kurz,et al.  Specifying Coalgebras with Modal Logic , 1998, CMCS.

[8]  Michael Barr,et al.  Terminal Coalgebras in Well-Founded Set Theory , 1993, Theor. Comput. Sci..

[9]  Jan J. M. M. Rutten Relators and Metric Bisimulations , 1998, CMCS.

[10]  Colin Stirling,et al.  Modal and temporal logics , 1993, LICS 1993.

[11]  Peter Aczel,et al.  A Final Coalgebra Theorem , 1989, Category Theory and Computer Science.

[12]  Bart Jacobs,et al.  Towards a Duality Result in Coalgebraic Modal Logic , 2000, CMCS.

[13]  G. M. Kelly,et al.  A $2$-categorical approach to change of base and geometric morphisms I , 1991 .

[14]  James Worrell,et al.  Terminal sequences for accessible endofunctors , 1999, CMCS.

[15]  Alexandru Baltag,et al.  A Logic for Coalgebraic Simulation , 2000, CMCS.

[16]  Bart Jacobs,et al.  The temporal logic of coalgebras via Galois algebras , 2002, Mathematical Structures in Computer Science.

[17]  Martin Rößiger From modal logic to terminal coalgebras , 2001 .

[18]  Davide Sangiorgi,et al.  On the bisimulation proof method , 1998, Mathematical Structures in Computer Science.

[19]  Lawrence S. Moss,et al.  Coalgebraic Logic , 1999, Ann. Pure Appl. Log..

[20]  Robin Milner,et al.  Communication and concurrency , 1989, PHI Series in computer science.

[21]  C. Pollard,et al.  Center for the Study of Language and Information , 2022 .

[22]  Jan Rutten,et al.  On the foundations of final coalgebra semantics: non-well-founded sets, partial orders, metric spaces , 1998, Mathematical Structures in Computer Science.

[23]  J. Lambek,et al.  Introduction to higher order categorical logic , 1986 .

[24]  Martin Rö,et al.  From modal logic to terminal coalgebras , 2001, Theor. Comput. Sci..

[25]  Jiří Adámek,et al.  Free algebras and automata realizations in the language of categories , 1974 .

[26]  Jirí Adámek,et al.  On the Greatest Fixed Point of a Set Functor , 1995, Theor. Comput. Sci..