Assembly of Viral Hydrogels for Three‐Dimensional Conducting Nanocomposites

M13 bacteriophages act as versatile scaffolds capable of organizing single-walled carbon nanotubes and fabricating three-dimensional conducting nanocomposites. The morphological, electrical, and electrochemical properties of the nanocomposites are presented, as well as its ability to disperse and utilize single-walled carbon nanotubes effectively.

[1]  Zhixiang Wei,et al.  Conducting Polyaniline Nanowire Arrays for High Performance Supercapacitors , 2010 .

[2]  Ruxangul Jamal,et al.  Solid-State Synthesis of Polyaniline/Single-Walled Carbon Nanotubes: A Comparative Study with Polyaniline/Multi-Walled Carbon Nanotubes , 2012, Materials.

[3]  Yun Jung Lee,et al.  Biologically activated noble metal alloys at the nanoscale: for lithium ion battery anodes. , 2010, Nano letters.

[4]  Ramamoorthy Ramesh,et al.  Virus-based piezoelectric energy generation. , 2012, Nature nanotechnology.

[5]  Alan G. MacDiarmid,et al.  ‘Polyaniline’: Protonic acid doping of the emeraldine form to the metallic regime , 1986 .

[6]  F. Béguin,et al.  Carbon materials for the electrochemical storage of energy in capacitors , 2001 .

[7]  A. Belcher,et al.  Layer-by-layer assembled porous photoanodes for efficient electron collection in dye-sensitized solar cells , 2013 .

[8]  Yen Wei,et al.  Polyaniline/carbon nanotube nanocomposite electrodes with biomimetic hierarchical structure for supercapacitors , 2013 .

[9]  Jing Sun,et al.  A Promising Way To Enhance the Electrochemical Behavior of Flexible Single-Walled Carbon Nanotube/Polyaniline Composite Films , 2010 .

[10]  Norio Miura,et al.  Polyaniline/single-wall carbon nanotube (PANI/SWCNT) composites for high performance supercapacitors , 2006 .

[11]  Reza Ghodssi,et al.  Virus-enabled silicon anode for lithium-ion batteries. , 2010, ACS nano.

[12]  G. Weiss,et al.  Virus-PEDOT nanowires for biosensing. , 2010, Nano letters.

[13]  Y. Shao-horn,et al.  Layer-by-layer assembled polyaniline nanofiber/multiwall carbon nanotube thin film electrodes for high-power and high-energy storage applications. , 2011, ACS nano.

[14]  Yingke Zhou,et al.  Preparation and Electrochemistry of SWNT/PANI Composite Films for Electrochemical Capacitors , 2004 .

[15]  Nataliya V. Roznyatovskaya,et al.  Conducting polymers in chemical sensors and arrays. , 2008, Analytica chimica acta.

[16]  Norio Miura,et al.  INFLUENCE OF THE MICROSTRUCTURE ON THE SUPERCAPACITIVE BEHAVIOR OF POLYANILINE/SINGLE-WALL CARBON NANOTUBE COMPOSITES , 2006 .

[17]  Jaroslav Stejskal,et al.  The mechanism of the oxidative polymerization of aniline and the formation of supramolecular polyaniline structures , 2008 .

[18]  Qiang Liu,et al.  Brushed-on flexible supercapacitor sheets using a nanocomposite of polyaniline and carbon nanotubes , 2010 .

[19]  Yexiang Tong,et al.  Polyaniline nanotube arrays as high-performance flexible electrodes for electrochemical energy storage devices , 2012 .

[20]  Guanghui Cheng,et al.  Transparent and flexible electrodes and supercapacitors using polyaniline/single-walled carbon nanotube composite thin films. , 2011, Nanoscale.

[21]  J. E. Lee,et al.  Anisotropic growth control of polyaniline nanostructures and their morphology-dependent electrochemical characteristics. , 2012, ACS nano.

[22]  A. Best,et al.  Conducting-polymer-based supercapacitor devices and electrodes , 2011 .

[23]  Zhixiang Wei,et al.  Flexible supercapacitors based on cloth-supported electrodes of conducting polymer nanowire array/SWCNT composites , 2011 .

[24]  Yun Jung Lee,et al.  Fabricating Genetically Engineered High-Power Lithium-Ion Batteries Using Multiple Virus Genes , 2009, Science.

[25]  Un Jeong Kim,et al.  DNA hydrogel templated carbon nanotube and polyaniline assembly and its applications for electrochemical energy storage devices , 2013 .

[26]  G. Lu,et al.  Fabrication of Graphene/Polyaniline Composite Paper via In Situ Anodic Electropolymerization for High-Performance Flexible Electrode. , 2009, ACS nano.

[27]  G. Wallace,et al.  Conducting polymers for neural interfaces: challenges in developing an effective long-term implant. , 2008, Biomaterials.

[28]  Po-Yen Chen,et al.  Versatile three-dimensional virus-based template for dye-sensitized solar cells with improved electron transport and light harvesting. , 2013, ACS nano.

[29]  J. Feijen,et al.  Glutaraldehyde as a crosslinking agent for collagen-based biomaterials , 1995 .

[30]  Xiaodong Chen,et al.  A “skeleton/skin” strategy for preparing ultrathin free-standing single-walled carbon nanotube/polyaniline films for high performance supercapacitor electrodes , 2012 .