Generation of three-qubit Greenberger–Horne–Zeilinger states of superconducting qubits by using dressed states

Combining the advantages of the dressed states and superconducting quantum interference device (SQUID) qubits, we propose an efficient scheme to generate Greenberger–Horne–Zeilinger (GHZ) states for three SQUID qubits. Firstly, we elaborate how to generate GHZ states of three SQUID qubits by choosing a set of dressed states suitably. Then, we compare the scheme by using dressed states with that via the adiabatic passage. Lastly, the influence of various decoherence factors, such as cavity decay, spontaneous emission and dephasing, is analyzed numerically. All of the results show that the GHZ state can be obtained fast and with high fidelity and that the present scheme is robust against the cavity decay and spontaneous emission. In addition, our scheme is more stable against the dephasing than the adiabatic scheme.

[1]  J. G. Muga,et al.  Frictionless dynamics of Bose–Einstein condensates under fast trap variations , 2009, 0910.2992.

[2]  Chui-Ping Yang,et al.  Generation of Greenberger-Horne-Zeilinger entangled states of photons in multiple cavities via a superconducting qutrit or an atom through resonant interaction , 2012, 1202.2084.

[3]  Xin Ji,et al.  Shortcuts to adiabatic passage for multiqubit controlled-phase gate , 2014, 1411.7434.

[4]  Stefano Longhi,et al.  Non-Hermitian shortcut to stimulated Raman adiabatic passage , 2014 .

[5]  Guang-Can Guo,et al.  Multiuser-to-multiuser entanglement distribution based on 1550 nm polarization-entangled photons , 2015 .

[6]  Ye-Hong Chen,et al.  Fast generation of N-atom Greenberger–Horne–Zeilinger state in separate coupled cavities via transitionless quantum driving , 2015, Quantum Inf. Process..

[7]  Fast frictionless dynamics as a toolbox for low-dimensional Bose-Einstein condensates , 2010, 1010.2854.

[8]  Yan Xia,et al.  Transitionless-based shortcuts for the fast and robust generation of W states , 2015, 1505.04372.

[9]  E. Torrontegui,et al.  Shortcuts to adiabaticity for non-Hermitian systems , 2011, 1106.2776.

[10]  J. Koch,et al.  Circuit QED lattices: Towards quantum simulation with superconducting circuits , 2012, 1212.2070.

[11]  Qi‐Cheng Wu,et al.  Method for constructing shortcuts to adiabaticity by a substitute of counterdiabatic driving terms , 2016, 1604.06301.

[12]  J. G. Muga,et al.  Fast optimal frictionless atom cooling in harmonic traps: shortcut to adiabaticity. , 2009, Physical review letters.

[13]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.

[14]  J. G. Muga,et al.  Generalized relation between pulsed and continuous measurements in the quantum Zeno effect , 2008, 0805.1199.

[15]  Chui-Ping Yang,et al.  Quantum information transfer and entanglement with SQUID qubits in cavity QED: a dark-state scheme with tolerance for nonuniform device parameter. , 2004, Physical review letters.

[16]  Stefano Longhi,et al.  Non-Hermitian shortcut to adiabaticity , 2013, 1306.0698.

[17]  J. G. Muga,et al.  Transitionless quantum drivings for the harmonic oscillator , 2009, 0912.4178.

[18]  Shi-Biao Zheng,et al.  Generation of Greenberger-Horne-Zeilinger states for multiple atoms trapped in separated cavities , 2009 .

[19]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[20]  Jie Song,et al.  An effective shortcut to adiabatic passage for fast quantum state transfer in a cavity quantum electronic dynamics system , 2014 .

[21]  Wojciech H Zurek,et al.  Assisted finite-rate adiabatic passage across a quantum critical point: exact solution for the quantum Ising model. , 2012, Physical review letters.

[22]  Chui-Ping Yang,et al.  A Proposal for Realizing a 3-Qubit Controlled-Phase Gate with Superconducting Qubit Systems Coupled to a Cavity , 2012, 1208.1345.

[23]  E. Torrontegui,et al.  Fast transport of Bose–Einstein condensates , 2011 .

[24]  Guang-Can Guo,et al.  Experimental verification of genuine multipartite entanglement without shared reference frames , 2016 .

[25]  F K Wilhelm,et al.  Quantum superposition of macroscopic persistent-current states. , 2000, Science.

[26]  A. del Campo,et al.  Frictionless quantum quenches in ultracold gases: A quantum-dynamical microscope , 2011, 1103.0714.

[27]  Xiaolong Su,et al.  Experimental realization of three-color entanglement at optical fiber communication and atomic storage wavelengths. , 2012, Physical review letters.

[28]  Y. Makhlin,et al.  Quantum-state engineering with Josephson-junction devices , 2000, cond-mat/0011269.

[29]  Shi-Biao Zheng,et al.  One-step synthesis of multiatom Greenberger-Horne-Zeilinger states. , 2001, Physical review letters.

[30]  Yan Xia,et al.  Shortcuts to adiabatic passage for multiparticles in distant cavities: applications to fast and noise-resistant quantum population transfer, entangled states’ preparation and transition , 2014, 1405.7779.

[31]  Chui-Ping Yang,et al.  Possible realization of entanglement, logical gates, and quantum-information transfer with superconducting-quantum-interference-device qubits in cavity QED , 2003, 1403.4037.

[32]  Xi Chen,et al.  Improving shortcuts to adiabaticity by iterative interaction pictures , 2013 .

[33]  Erratum: Shortcuts to adiabaticity for non-Hermitian systems [Phys. Rev. A84, 023415 (2011)] , 2012 .

[34]  Yan Xia,et al.  Shortcuts to adiabatic passage for fast generation of Greenberger-Horne-Zeilinger states by transitionless quantum driving , 2014, Scientific Reports.

[35]  Yan Xia,et al.  Efficient shortcuts to adiabatic passage for fast population transfer in multiparticle systems , 2014, 1401.4291.

[36]  E. Torrontegui,et al.  Hamiltonian engineering via invariants and dynamical algebra , 2014, 1402.5695.

[37]  Qing Ai,et al.  Physically feasible three-level transitionless quantum driving with multiple Schrödinger dynamics , 2016, 1602.00050.

[38]  G. Guo,et al.  Efficient scheme for two-atom entanglement and quantum information processing in cavity QED , 2000, Physical review letters.

[39]  Klaus Molmer,et al.  Adiabatic tracking of quantum many-body dynamics , 2014, 1408.0524.

[40]  Qing Ai,et al.  Erratum: Physically feasible three-level transitionless quantum driving with multiple Schrödinger dynamics [Phys. Rev. A93, 052324 (2016)] , 2016 .

[41]  Wei Feng,et al.  Generating and stabilizing the Greenberger-Horne-Zeilinger state in circuit QED: Joint measurement, Zeno effect, and feedback , 2011, 1101.4327.

[42]  A. Baksic,et al.  Supplementary information for “ Speeding up adiabatic quantum state transfer by using dressed states ” , 2016 .

[43]  Quantum information transfer with superconducting flux qubits coupled to a resonator , 2010, 1012.2030.

[44]  M. Keiji,et al.  Nonadiabatic detection of the geometric phase of the macroscopic quantum state with a symmetric SQUID , 2001, quant-ph/0104127.

[45]  J. G. Muga,et al.  Shortcuts to adiabaticity in three-level systems using Lie transforms , 2014, 1403.2593.

[46]  J. G. Muga,et al.  Transient energy excitation in shortcuts to adiabaticity for the time-dependent harmonic oscillator , 2010, 1009.5582.

[47]  K. Mølmer,et al.  Partial suppression of nonadiabatic transitions , 2014 .

[48]  Yan Xia,et al.  Fast and noise-resistant implementation of quantum phase gates and creation of quantum entangled states , 2014, 1410.8285.

[49]  Siyuan Han,et al.  Rotation gate for a three-level superconducting quantum interference device qubit with resonant interaction , 2006 .

[50]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[51]  A. Campo,et al.  Shortcuts to adiabaticity by counterdiabatic driving. , 2013, Physical review letters.

[52]  H. Kimble,et al.  Efficient engineering of multiatom entanglement through single-photon detections. , 2003, Physical review letters.

[53]  Lituo Shen,et al.  Shortcuts to adiabatic passage for population transfer and maximum entanglement creation between two atoms in a cavity , 2013, 1310.5323.

[54]  Michel Devoret,et al.  Circuit‐QED: How strong can the coupling between a Josephson junction atom and a transmission line resonator be? * , 2007, Annalen der Physik.

[55]  Xue-ke Song,et al.  Shortcuts to adiabatic holonomic quantum computation in decoherence-free subspace with transitionless quantum driving algorithm , 2015, 1509.00097.

[56]  Alexandre Blais,et al.  Operation of universal gates in a solid state quantum computer based on clean Josephson junctions between d-wave superconductors , 2000 .

[57]  E Torrontegui,et al.  Multiple Schrödinger pictures and dynamics in shortcuts to adiabaticity. , 2011, Physical review letters.

[58]  M. Huber,et al.  Direct measurement of the Josephson supercurrent in an ultrasmall Josephson junction. , 2001, Physical review letters.

[59]  P. K. Aravind Bells theorem without inequalities and only two distant observers , 2001, OFC 2001.

[60]  Chui-Ping Yang,et al.  Generating entanglement between microwave photons and qubits in multiple cavities coupled by a superconducting qutrit , 2011, 1106.3237.

[61]  J. Dowling Quantum optical metrology – the lowdown on high-N00N states , 2008, 0904.0163.

[62]  K. Gao,et al.  Generation of N-qubit W states with rf SQUID qubits by adiabatic passage , 2006, quant-ph/0612161.

[63]  J. G. Muga,et al.  Shortcut to adiabatic passage in two- and three-level atoms. , 2010, Physical review letters.

[64]  Lukens,et al.  Generation of a population inversion between quantum states of a macroscopic variable. , 1996, Physical review letters.

[65]  J. G. Muga,et al.  Pulse design without the rotating-wave approximation , 2015, 1507.00628.

[66]  Alexandre Blais,et al.  Operation of universal gates in a solid state quantum computer based on clean Josephson junctions between d-wave superconductors , 2000 .

[67]  Yan Xia,et al.  Fast generation of three-atom singlet state by transitionless quantum driving , 2016, Scientific Reports.

[68]  Chui-Ping Yang Preparation of n-qubit Greenberger-Horne-Zeilinger entangled states in cavity QED: An approach with tolerance to nonidentical qubit-cavity coupling constants , 2011 .