A data-driven edge-preserving D-bar method for electrical impedance tomography

In Electrical Impedance Tomography (EIT), the internal conductivity of a body is recovered via current and voltage measurements taken at its surface. The reconstruction task is a highly ill-posed nonlinear inverse problem, which is very sensitive to noise, and requires the use of regularized solution methods, of which D-bar is the only proven method. The resulting EIT images have low spatial resolution due to smoothing caused by low-pass filtered regularization. In many applications, such as medical imaging, it is known a priori that the target contains sharp features such as organ boundaries, as well as approximate ranges for realistic conductivity values. In this paper, we use this information in a new edge-preserving EIT algorithm, based on the original D-bar method coupled with a deblurring flow stopped at a minimal data discrepancy. The method makes heavy use of a novel data fidelity term based on the so-called CGO sinogram. This nonlinear data step provides superior robustness over traditional EIT data formats such as current-to-voltage matrices or Dirichlet-to-Neumann operators, for commonly used current patterns.

[1]  Antonin Chambolle,et al.  Image Segmentation by Variational Methods: Mumford and Shah Functional and the Discrete Approximations , 1995, SIAM J. Appl. Math..

[2]  Kari Astala,et al.  Calderon's inverse conductivity problem in the plane , 2006 .

[3]  Joachim Weickert,et al.  Anisotropic diffusion in image processing , 1996 .

[4]  Kari Astala,et al.  A boundary integral equation for Calderón's inverse conductivity problem , 2006 .

[5]  Ronny Ramlau,et al.  A Mumford-Shah level-set approach for the inversion and segmentation of X-ray tomography data , 2007, J. Comput. Phys..

[6]  W. Marsden I and J , 2012 .

[7]  R. Pethig,et al.  Dielectric properties of body tissues. , 1987, Clinical physics and physiological measurement : an official journal of the Hospital Physicists' Association, Deutsche Gesellschaft fur Medizinische Physik and the European Federation of Organisations for Medical Physics.

[8]  Horia D. Cornean,et al.  Towards a d-bar reconstruction method for three-dimensional EIT , 2006 .

[9]  C. D. Perttunen,et al.  Lipschitzian optimization without the Lipschitz constant , 1993 .

[10]  Nuutti Hyvönen,et al.  Edge-Enhancing Reconstruction Algorithm for Three-Dimensional Electrical Impedance Tomography , 2014, SIAM J. Sci. Comput..

[11]  A. Calderón,et al.  On an inverse boundary value problem , 2006 .

[12]  Matti Lassas,et al.  REGULARIZED D-BAR METHOD FOR THE INVERSE CONDUCTIVITY PROBLEM , 2009 .

[13]  Alexandru Tamasan,et al.  Reconstruction of Less Regular Conductivities in the Plane , 2001 .

[14]  Samuli Siltanen,et al.  Direct electrical impedance tomography for nonsmooth conductivities , 2011 .

[15]  A. Nachman,et al.  Global uniqueness for a two-dimensional inverse boundary value problem , 1996 .

[16]  Kim Knudsen,et al.  A new direct method for reconstructing isotropic conductivities in the plane. , 2003, Physiological measurement.

[17]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  E. D. Giorgi,et al.  Existence theorem for a minimum problem with free discontinuity set , 1989 .

[19]  M. Lassas,et al.  Hierarchical models in statistical inverse problems and the Mumford–Shah functional , 2009, 0908.3396.

[20]  F. Santosa,et al.  ENHANCED ELECTRICAL IMPEDANCE TOMOGRAPHY VIA THE MUMFORD{SHAH FUNCTIONAL , 2001 .

[21]  Jutta Bikowski,et al.  Direct numerical reconstruction of conductivities in three dimensions using scattering transforms , 2010, 1003.3764.

[22]  Xavier Bresson,et al.  Nonlocal Mumford-Shah Regularizers for Color Image Restoration , 2011, IEEE Transactions on Image Processing.

[23]  Samuli Siltanen,et al.  Exceptional circles of radial potentials , 2013 .

[24]  Jennifer L. Mueller,et al.  Direct EIT Reconstructions of Complex Admittivities on a Chest-Shaped Domain in 2-D , 2013, IEEE Transactions on Medical Imaging.

[25]  S J Hamilton,et al.  A direct D-bar reconstruction algorithm for recovering a complex conductivity in 2D , 2012, Inverse problems.

[26]  David Isaacson,et al.  An implementation of the reconstruction algorithm of A Nachman for the 2D inverse conductivity problem , 2000 .

[27]  L. Ambrosio,et al.  Approximation of functional depending on jumps by elliptic functional via t-convergence , 1990 .

[28]  Samuli Siltanen,et al.  Nonlinear Inversion from Partial EIT Data: Computational Experiments , 2013, 1303.3162.

[29]  Samuli Siltanen,et al.  Linear and Nonlinear Inverse Problems with Practical Applications , 2012, Computational science and engineering.

[30]  David Isaacson,et al.  Electrical Impedance Tomography , 2002, IEEE Trans. Medical Imaging.

[31]  Russell M. Brown Global Uniqueness in the Impedance-Imaging Problem for Less Regular Conductivities , 1996 .

[32]  D. Isaacson,et al.  An implementation of the reconstruction algorithm of A Nachman for the 2D inverse conductivity problem , 2000 .

[33]  Samuli Siltanen,et al.  Direct Reconstructions of Conductivities from Boundary Measurements , 2002, SIAM J. Sci. Comput..

[34]  Elisa Francini Recovering a complex coefficient in a planar domain from the Dirichlet-to-Neumann map , 2000 .

[35]  Per Christian Hansen,et al.  Electrical impedance tomography: 3D reconstructions using scattering transforms , 2012 .

[36]  J. Shah,et al.  Approximation of non-convex functionals in GBV , 1998 .

[37]  L. D. Faddeev Increasing Solutions of the Schroedinger Equation , 1966 .

[38]  J C Newell,et al.  Imaging cardiac activity by the D-bar method for electrical impedance tomography , 2006, Physiological measurement.

[39]  J. Sylvester,et al.  A global uniqueness theorem for an inverse boundary value problem , 1987 .

[40]  D. Finkel,et al.  Direct optimization algorithm user guide , 2003 .

[41]  Jayant Shah,et al.  A common framework for curve evolution, segmentation and anisotropic diffusion , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.