Measurements on release-recapture of cold Rb-85 atoms using an optical nanofibre in a magneto-optical trap

We have performed release-recapture temperature measurements of laser-cooled Rb-85 atoms using an optical nanofibre (ONF) in a magneto-optical trap (MOT). The effects of changing the cooling laser light-shift parameter on the temperature of the cold atoms and spring constant of the trap are studied. By varying the cold atom number density near the ONF, the onset of the multiple scattering regime is observed without the need for an estimation of the atom cloud size. Moreover, this sensitive ONF assisted release-recapture technique is easily able to detect any optical misalignment of the cooling laser beams in the MOT.

[1]  Síle Nic Chormaic,et al.  Manifestation of the van der Waals surface interaction in the spontaneous emission of atoms into an optical nanofiber , 2010 .

[2]  Cooper,et al.  High-density trapping of cesium atoms in a dark magneto-optical trap. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[3]  W. Ertmer,et al.  On-Line Measurement of Sub-Doppler Temperatures in a Rb Magneto-optical Trap by Trap Centre Oscillations , 1993 .

[4]  Mark Daly,et al.  1- and 2-photon absorption by laser-cooled 85Rb using an optical nanofiber , 2012 .

[5]  V. G. Truong,et al.  Higher order mode propagation in an optical nanofiber , 2012 .

[6]  V. B. Tiwari,et al.  Measurements on impulsive force-induced dynamics of a cold 85Rb atom cloud in a magneto-optical trap , 2008 .

[7]  Carl E. Wieman,et al.  Behavior of neutral atoms in a spontaneous force trap , 1991 .

[8]  Chu,et al.  Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure. , 1985, Physical review letters.

[9]  E. Cornell,et al.  Teflon feedthrough for coupling optical fibers into ultrahigh vacuum systems. , 1998, Applied optics.

[10]  K. Overstreet,et al.  Multiple scattering and the density distribution of a Cs MOT. , 2005, Optics express.

[11]  T B Pittman,et al.  Observation of two-photon absorption at low power levels using tapered optical fibers in rubidium vapor. , 2010, Physical review letters.

[12]  H. Kimble,et al.  Demonstration of a state-insensitive, compensated nanofiber trap. , 2012, Physical review letters.

[13]  F. Kien,et al.  Scattering of an evanescent light field by a single cesium atom near a nanofiber (11 pages) , 2006 .

[14]  W. D. Phillips,et al.  Optical molasses , 1990, Conference on Precision Electromagnetic Measurements.

[15]  V. Bagnato,et al.  Temperature determination for magneto optical trapped atoms using a single parameter transient absorption , 2006 .

[16]  S. Beattie,et al.  Measurements of temperature scaling laws in an optically dense magneto-optical trap , 2004 .

[17]  Síle Nic Chormaic,et al.  Tapered optical fibers as tools for probing magneto-optical trap characteristics. , 2009, The Review of scientific instruments.

[18]  G S Pati,et al.  Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor. , 2008, Physical review letters.

[19]  H. Metcalf,et al.  The Quest for BEC , 2002 .

[20]  Walker,et al.  Collective behavior of optically trapped neutral atoms. , 1990, Physical review letters.

[21]  P. Gould,et al.  Measurements of temperature and spring constant in magneto-optical trap , 1994 .

[22]  Kohzo Hakuta,et al.  Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes , 2005 .

[23]  Laura Russell,et al.  Spectral distribution of atomic fluorescence coupled into an optical nanofibre , 2009 .

[24]  Fam Le Kien,et al.  Optical nanofiber as an efficient tool for manipulating and probing atomic Fluorescence. , 2007, Optics express.

[25]  C. Foot,et al.  Laser Cooling below the Doppler Limit in a Magneto-Optical Trap , 1991 .

[26]  J. Knight,et al.  Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper. , 1997, Optics letters.

[27]  Jonathan Ward,et al.  Thermo-Optical Tuning of Whispering Gallery Modes in Erbium:Ytterbium Doped Glass Microspheres to Arbitrary Probe Wavelengths , 2012 .

[28]  Laura Russell,et al.  Sub-Doppler temperature measurements of laser-cooled atoms using optical nanofibres , 2011 .

[29]  S. Dawkins,et al.  Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber. , 2009, Physical review letters.

[30]  G. S. Murugan,et al.  Optical manipulation of microspheres along a subwavelength optical wire. , 2007, Optics letters.

[31]  Cooper,et al.  Phase-space density in the magneto-optical trap. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[32]  Síle Nic Chormaic,et al.  Thermo-optical tuning of whispering gallery modes in Er:Yb co-doped phosphate glass microspheres , 2010 .

[33]  J. Dalibard Laser cooling of an optically thick gas: The simplest radiation pressure trap? , 1988 .

[34]  B. Shortt,et al.  Heat-and-pull rig for fiber taper fabrication , 2006, physics/0604049.

[35]  Vladimir S. Ilchenko,et al.  Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes , 1999 .

[36]  G. Brambilla,et al.  Optical fibre nanowires and microwires: a review , 2010 .

[37]  Stephens,et al.  Experimental and theoretical study of the vapor-cell Zeeman optical trap. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[38]  Phillips,et al.  Observation of atoms laser cooled below the Doppler limit. , 1988, Physical review letters.