On the Role of Dopamine in Cognitive Vision

Although dopamine is one of the most studied neurotransmitter in the brain, its exact function is still unclear. This short review focuses on its role in different levels of cognitive vision: visual processing, visual attention and working memory. Dopamine can influence cognitive vision either through direct modulation of visual cells or through gating of basal ganglia functioning. Even if its classically assigned role is to signal reward prediction error, we review evidence that dopamine is also involved in novelty detection and attention shifting and discuss the possible implications for computational modeling.

[1]  Joshua W. Brown,et al.  How the Basal Ganglia Use Parallel Excitatory and Inhibitory Learning Pathways to Selectively Respond to Unexpected Rewarding Cues , 1999, The Journal of Neuroscience.

[2]  O. Hikosaka,et al.  Eye movements in monkeys with local dopamine depletion in the caudate nucleus. II. Deficits in voluntary saccades , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[3]  J. Horvitz Mesolimbocortical and nigrostriatal dopamine responses to salient non-reward events , 2000, Neuroscience.

[4]  D. Gaffan,et al.  Perirhinal Cortex Ablation Impairs Visual Object Identification , 1998, The Journal of Neuroscience.

[5]  Joel L. Davis,et al.  A Model of How the Basal Ganglia Generate and Use Neural Signals That Predict Reinforcement , 1994 .

[6]  B. Postle,et al.  Maintenance versus Manipulation of Information Held in Working Memory: An Event-Related fMRI Study , 1999, Brain and Cognition.

[7]  P. Goldman-Rakic Cellular basis of working memory , 1995, Neuron.

[8]  Robert H. Wurtz,et al.  Influence of the thalamus on spatial visual processing in frontal cortex , 2006, Nature.

[9]  A. Nieoullon Dopamine and the regulation of cognition and attention , 2002, Progress in Neurobiology.

[10]  J. Seamans,et al.  The principal features and mechanisms of dopamine modulation in the prefrontal cortex , 2004, Progress in Neurobiology.

[11]  H Spekreijse,et al.  A Neural Correlate of Working Memory in the Monkey Primary Visual Cortex , 2001, Science.

[12]  Richard C Saunders,et al.  DNA targeting of rhinal cortex D2 receptor protein reversibly blocks learning of cues that predict reward. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[13]  T. Robbins,et al.  Striatal contributions to working memory: a functional magnetic resonance imaging study in humans , 2004, The European journal of neuroscience.

[14]  Daeyeol Lee,et al.  What are the units of visual short-term memory, objects or spatial locations? , 2001, Perception & psychophysics.

[15]  E. Miller,et al.  Suppression of visual responses of neurons in inferior temporal cortex of the awake macaque by addition of a second stimulus , 1993, Brain Research.

[16]  K Cheng,et al.  Organization of Corticostriatal and Corticoamygdalar Projections Arising from the Anterior Inferotemporal Area TE of the Macaque Monkey: A Phaseolus vulgaris Leucoagglutinin Study , 1997, The Journal of Neuroscience.

[17]  Jonathan D. Cohen,et al.  Cognition and control in schizophrenia: a computational model of dopamine and prefrontal function , 1999, Biological Psychiatry.

[18]  Leslie G. Ungerleider,et al.  Transient and sustained activity in a distributed neural system for human working memory , 1997, Nature.

[19]  Roland E. Suri,et al.  Temporal Difference Model Reproduces Anticipatory Neural Activity , 2001, Neural Computation.

[20]  CR Yang,et al.  Dopamine D1 receptor actions in layers V-VI rat prefrontal cortex neurons in vitro: modulation of dendritic-somatic signal integration , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[21]  F. Gregory Ashby,et al.  FROST: A Distributed Neurocomputational Model of Working Memory Maintenance , 2005, Journal of Cognitive Neuroscience.

[22]  A. Parent,et al.  The current model of basal ganglia organization under scrutiny , 1998, Movement disorders : official journal of the Movement Disorder Society.

[23]  David S. Touretzky,et al.  Long-Term Reward Prediction in TD Models of the Dopamine System , 2002, Neural Computation.

[24]  T Moore,et al.  Control of eye movements and spatial attention. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[25]  P. Goldman-Rakic,et al.  Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. , 1989, Journal of neurophysiology.

[26]  Joel L. Davis,et al.  Adaptive Critics and the Basal Ganglia , 1995 .

[27]  C. Ranganath Working memory for visual objects: Complementary roles of inferior temporal, medial temporal, and prefrontal cortex , 2006, Neuroscience.

[28]  Y. Burnod,et al.  A Model of Prefrontal Cortex Dopaminergic Modulation during the Delayed Alternation Task , 2002, Journal of Cognitive Neuroscience.

[29]  Paul Witkovsky,et al.  Dopamine and retinal function , 2004, Documenta Ophthalmologica.

[30]  R. Desimone,et al.  Neural mechanisms of selective visual attention. , 1995, Annual review of neuroscience.

[31]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[32]  T. Reader,et al.  Dopamine in the visual cortex of the cat , 1986, Experientia.

[33]  J. Mayhew,et al.  How Visual Stimuli Activate Dopaminergic Neurons at Short Latency , 2005, Science.

[34]  C. Koch,et al.  Computational modelling of visual attention , 2001, Nature Reviews Neuroscience.

[35]  O. Hikosaka Models of information processing in the basal Ganglia edited by James C. Houk, Joel L. Davis and David G. Beiser, The MIT Press, 1995. $60.00 (400 pp) ISBN 0 262 08234 9 , 1995, Trends in Neurosciences.

[36]  T. Ljungberg,et al.  Sensory inattention produced by 6-hydroxydopamine-induced degeneration of ascending dopamine neurons in the brain , 1976, Experimental Neurology.

[37]  E. Rolls,et al.  A Neurodynamical cortical model of visual attention and invariant object recognition , 2004, Vision Research.

[38]  Michael J. Frank,et al.  Making Working Memory Work: A Computational Model of Learning in the Prefrontal Cortex and Basal Ganglia , 2006, Neural Computation.

[39]  Y. Hurd,et al.  D1 and D2 dopamine receptor mRNA expression in whole hemisphere sections of the human brain , 2001, Journal of Chemical Neuroanatomy.

[40]  T. Sejnowski,et al.  Neurocomputational models of working memory , 2000, Nature Neuroscience.

[41]  F. Hamker,et al.  Hebbian learning in a model with dynamic rate-coded neurons: An alternative to the generative model approach for learning receptive fields from natural scenes , 2007, Network.

[42]  B. Postle,et al.  Dissociation of human caudate nucleus activity in spatial and nonspatial working memory: an event-related fMRI study. , 1999, Brain research. Cognitive brain research.

[43]  A. Graybiel,et al.  Neurons in the thalamic CM-Pf complex supply striatal neurons with information about behaviorally significant sensory events. , 2001, Journal of neurophysiology.

[44]  Kae Nakamura,et al.  Basal ganglia orient eyes to reward. , 2006, Journal of neurophysiology.

[45]  E. Rolls,et al.  Hippocampo‐cortical and cortico‐cortical backprojections , 2000, Hippocampus.

[46]  Charles J. Wilson,et al.  The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[47]  S. Thorpe,et al.  The orbitofrontal cortex: Neuronal activity in the behaving monkey , 2004, Experimental Brain Research.

[48]  P. Strick,et al.  Basal-ganglia 'projections' to the prefrontal cortex of the primate. , 2002, Cerebral cortex.

[49]  G. E. Alexander Selective neuronal discharge in monkey putamen reflects intended direction of planned limb movements , 2004, Experimental Brain Research.

[50]  Peter Dayan,et al.  A Neural Substrate of Prediction and Reward , 1997, Science.

[51]  F. Hamker The reentry hypothesis: the putative interaction of the frontal eye field, ventrolateral prefrontal cortex, and areas V4, IT for attention and eye movement. , 2005, Cerebral cortex.

[52]  Kimberly S. Kirkpatrick,et al.  Stimulus and temporal cues in classical conditioning. , 2000, Journal of experimental psychology. Animal behavior processes.

[53]  G. E. Alexander,et al.  Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, "prefrontal" and "limbic" functions. , 1990, Progress in brain research.

[54]  Boris S. Gutkin,et al.  Dopamine modulation in the basal ganglia locks the gate to working memory , 2006, Journal of Computational Neuroscience.

[55]  Richard S. Sutton,et al.  Introduction to Reinforcement Learning , 1998 .

[56]  Michael J. Frank,et al.  Interactions between frontal cortex and basal ganglia in working memory: A computational model , 2001, Cognitive, affective & behavioral neuroscience.

[57]  Keiji Tanaka,et al.  Reward Association Affects Neuronal Responses to Visual Stimuli in Macaque TE and Perirhinal Cortices , 2006, The Journal of Neuroscience.

[58]  G. Rizzolatti,et al.  Reorienting attention across the horizontal and vertical meridians: Evidence in favor of a premotor theory of attention , 1987, Neuropsychologia.

[59]  C. W. Oyster,et al.  Responses of rabbit superior colliculus neurons to repeated visual stimuli. , 1975, Journal of neurophysiology.

[60]  M. D’Esposito,et al.  Directing the mind's eye: prefrontal, inferior and medial temporal mechanisms for visual working memory , 2005, Current Opinion in Neurobiology.

[61]  Stephen Grossberg,et al.  A massively parallel architecture for a self-organizing neural pattern recognition machine , 1988, Comput. Vis. Graph. Image Process..

[62]  S Ullman,et al.  Shifts in selective visual attention: towards the underlying neural circuitry. , 1985, Human neurobiology.

[63]  H. Fibiger,et al.  Afferent connections of the laterodorsal and the pedunculopontine tegmental nuclei in the rat: A retro‐ and antero‐grade transport and immunohistochemical study , 1992, The Journal of comparative neurology.

[64]  K. Nakamura,et al.  Lateral hypothalamus neuron involvement in integration of natural and artificial rewards and cue signals. , 1986, Journal of neurophysiology.

[65]  Peter Redgrave,et al.  Phasic activation of substantia nigra and the ventral tegmental area by chemical stimulation of the superior colliculus: an electrophysiological investigation in the rat , 2003, The European journal of neuroscience.

[66]  E. T. Rolls,et al.  Activity of neurones in the inferotemporal cortex of the alert monkey , 1977, Brain Research.

[67]  Isabella Silkis,et al.  A hypothetical role of cortico-basal ganglia-thalamocortical loops in visual processing , 2007, Biosyst..

[68]  J. E. Albano,et al.  Visual-motor function of the primate superior colliculus. , 1980, Annual review of neuroscience.

[69]  Julien Vitay,et al.  Sustained Activities and Retrieval in a Computational Model of the Perirhinal Cortex , 2008, Journal of Cognitive Neuroscience.

[70]  C. Marsden,et al.  l-Dopa withdrawal in Parkinson's disease selectively impairs cognitive performance in tests sensitive to frontal lobe dysfunction , 2005, Psychopharmacology.

[71]  R. Passingham,et al.  Active maintenance in prefrontal area 46 creates distractor-resistant memory , 2002, Nature Neuroscience.

[72]  Edward K. Vogel,et al.  The capacity of visual working memory for features and conjunctions , 1997, Nature.

[73]  G. E. Alexander,et al.  Neuron Activity Related to Short-Term Memory , 1971, Science.

[74]  O. Hikosaka,et al.  Role of the basal ganglia in the control of purposive saccadic eye movements. , 2000, Physiological reviews.

[75]  P. Goldman-Rakic,et al.  Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. , 2000, Cerebral cortex.

[76]  J. Huston,et al.  Dopamine activity in the occipital and temporal cortices of rats: Dissociating effects of sensory but not pharmacological stimulation , 2007, Synapse.