A New Approach to the Conjugacy Problem in Garside Groups
暂无分享,去创建一个
[1] Patrick Dehornoy. Groupes de Garside , 2001 .
[2] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[3] Hugh R. Morton,et al. ALGORITHMS FOR POSITIVE BRAIDS , 1994 .
[4] David B. A. Epstein,et al. Word processing in groups , 1992 .
[5] F. A. Garside,et al. THE BRAID GROUP AND OTHER GROUPS , 1969 .
[6] Ki Hyoung Ko,et al. The Infimum, Supremum, and Geodesic Length of a Braid Conjugacy Class , 2000 .
[7] Matthieu Picantin,et al. THE CONJUGACY PROBLEM IN SMALL GAUSSIAN GROUPS , 2001 .
[8] Joan S. Birman,et al. A new approach to the word and conjugacy problems in the braid groups , 1997 .
[9] Patrick Dehornoy,et al. Gaussian Groups and Garside Groups, Two Generalisations of Artin Groups , 1999 .
[10] D. Goldfeld,et al. An algebraic method for public-key cryptography , 1999 .
[11] W. Thurston. On the geometry and dynamics of diffeomorphisms of surfaces , 1988 .
[12] Juan Gonzalez-Meneses,et al. Conjugacy problem for braid groups and Garside groups1 , 2001 .
[13] E. Artin. The theory of braids. , 1950, American scientist.
[14] Jung Hee Cheon,et al. New Public-Key Cryptosystem Using Braid Groups , 2000, CRYPTO.
[15] John J. Cannon,et al. The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..
[16] Sangjin Lee,et al. Pseudorandomness from Braid Groups , 2001, CRYPTO.