A study of energy transfer processes in zinc–porphyrin films using Monte Carlo simulation of fluorescence decay

Abstract Energy transfer in thin films of zinc tetra(-octylphenyl)-porphyrin (ZnTOPP) doped with the copper (CuTOPP) or free-base (H2TOPP) analogues were investigated by time-resolved fluorescence and Monte Carlo simulations, applied to a single domain model of parallel porphyrin stacks. Rate constants for intra- and inter-stack energy transfer are (0.8–1.1)×1012 and (71–91)×10 9 s −1 , respectively. The fluorescence lifetimes for ZnTOPP and H2TOPP films are (1.80–1.88)×10−9 and (6.8–7.3)×10−9 s. The rate constant for H2TOPP to ZnTOPP back transfer is (8.8–9.4)×10 6 s −1 . The results agree with those of a previous analytical analysis [1] .

[1]  N. Kometani,et al.  Luminescence Properties of the Mixed J-Aggregate of Two Kinds of Cyanine Dyes in Layer-by-Layer Alternate Assemblies , 2000 .

[2]  P. R. Bevington,et al.  Data Reduction and Error Analysis for the Physical Sciences , 1969 .

[3]  T. Schaafsma Organic solar cells using porphyrin assemblies on semiconductor substrates. , 1995 .

[4]  Y. Shimizu,et al.  Photoconduction of a mesogenic long-chain tetraphenylporphyrin in a symmetrical sandwich-type cell , 1998 .

[5]  E. Don,et al.  Thin film solar cells , 1980 .

[6]  David L. Andrews,et al.  Resonance Energy Transfer , 1999 .

[7]  L. Gallos,et al.  Triphenylene Columnar Liquid Crystals: Excited States and Energy Transfer , 1995 .

[8]  Zbigniew S. Kolber,et al.  Monte Carlo convolution method for simulation and analysis of fluorescence decay data , 1991 .

[9]  N. Kanayama,et al.  Complexation of Porphyrin with a Pyridine Moiety in Self-Assembled Monolayers on Metal Surfaces , 2000 .

[10]  A. Bard,et al.  Effects of order on the photophysical properties of the liquid crystal zinc octakis(.beta.-octoxyethyl)porphyrin , 1989 .

[11]  S. Costa,et al.  Luminescence of Zinc Tetraphenylporphyrin in Ethylene Glycol-in-Oil Microemulsions , 1998 .

[12]  F. Kampas,et al.  On the preparation of metalloporphyrins , 1970 .

[13]  Silvano Donati,et al.  Photodetectors: Devices, Circuits and Applications , 1999 .

[14]  N. Maiti,et al.  Dynamics of Porphyrin Molecules in Micelles. Picosecond Time-Resolved Fluorescence Anisotropy Studies , 1995 .

[15]  M. Prieto,et al.  Resonance Energy Transfer in Heterogeneous Planar and Bilayer Systems: Theory and Simulation , 2000 .

[16]  A. Visser,et al.  Pulse selection system with electro‐optic modulators applied to mode‐locked cw lasers and time‐resolved single photon counting , 1981 .

[17]  A. Adler,et al.  Mechanistic Investigations of Porphyrin Syntheses. I. Preliminary Studies on ms-Tetraphenylporphin , 1964 .

[18]  J. S. Connolly,et al.  Spectroscopic, photophysical, and redox properties of some meso-substituted free-base porphyrins , 1993 .

[19]  E. W. Meijer,et al.  The dynamics of electronic energy transfer in novel multiporphyrin functionalized dendrimers: A time-resolved fluorescence anisotropy. , 2000 .

[20]  I. Leray,et al.  Films of polyvinylpyrrolidone containing zinc tetraphenylporphyrin: evidence for aggregation of porphyrins in the presence of pyridine , 1997 .

[21]  Y. Shimizu,et al.  Mesomorphic phase transitions of tetraphenylporphyrins with four long aliphatic chains , 1993 .