Optimization of 1.3-um etched-well surface-emitting laser design

A self-consistent analytical thermal-electrical model is developed to simulate thermal properties of etched-well InGaAsP/InP buried-heterostructure VCSELs with dielectric mirrors. The model is then used to investigate the influence of various design parameters on device performance. In particular, we examine the effects of varying the P-cladding doping level, active-region-, mirror-, and well-diameters, solder material, and mirror materials. We find that the dielectric mirrors are the most critical elements of the device. To increase the output power/operation temperature of the device, both mirrors must have high thermal conductivity and minimal scattering loss.

[1]  Diana L. Huffaker,et al.  Low threshold half-wave vertical-cavity lasers , 1994 .

[2]  Kenichi Iga,et al.  Near room temperature continuous wave lasing characteristics of GaInAsP/InP surface emitting laser , 1993 .

[3]  K. Y. Lau,et al.  High single‐mode output power from compact external microcavity surface‐emitting laser diode , 1993 .

[4]  Modeling the current to light characteristics of index‐guided vertical‐cavity surface‐emitting lasers , 1993 .

[5]  K. Choquette,et al.  Vertical cavity surface emitting lasers with 21% efficiency by metalorganic vapor phase epitaxy , 1994, IEEE Photonics Technology Letters.

[6]  K. Lau,et al.  High single-transverse-mode output from external-cavity surface-emitting laser diodes , 1993 .

[7]  Marlin W. Focht,et al.  1 W (pulsed) vertical cavity surface emitting laser , 1993 .

[8]  Larry A. Coldren,et al.  Efficient vertical-cavity lasers , 1992 .

[9]  M. Osinski,et al.  Thermal properties of etched-well surface-emitting semiconductor lasers , 1991 .

[10]  Marek Osinski,et al.  Thermal analysis of GaAs-AlGaAs etched-well surface-emitting double-heterostructure lasers with dielectric mirrors , 1993 .

[11]  T. Baba,et al.  Low threshold room temperature pulsed and -57 degrees C CW operations of 1.3 mu m GaInAsP/InP circular planar buried heterostructure surface-emitting lasers , 1993, IEEE Photonics Technology Letters.

[12]  H. Okamoto,et al.  Room temperature pulsed operation of 1.5 mu m GaInAsP/InP vertical-cavity surface-emitting laser , 1992, IEEE Photonics Technology Letters.

[13]  U. Koren,et al.  Low-threshold, high-temperature pulsed operation of InGaAsP/InP vertical cavity surface emitting lasers , 1991, IEEE Photonics Technology Letters.

[14]  F. Koyama,et al.  Threshold reduction of 1.3 μm GaInAsP/InP surface emitting laser by a maskless circular planar buried heterostructure regrowth , 1993 .

[15]  S. J. B. Yoo,et al.  Thermal comparison of long-wavelength vertical-cavity surface-emitting laser diodes , 1994 .

[16]  F. Koyama,et al.  Continuous Wave GaInAsP/InP Surface Emitting Lasers with a Thermally Conductive MgO/Si Mirror , 1994 .

[17]  Mary K. Hibbs-Brenner,et al.  Vertical-cavity surface-emitting laser arrays , 1995, Photonics West.

[18]  S. Chu,et al.  Room temperature photopumped 1.5 mu m quantum well surface emitting lasers with InGaAsP/InP distributed Bragg reflectors , 1991 .

[19]  Marek Osinski,et al.  Effective thermal conductivity analysis of 1.55 mu m InGaAsP/InP vertical-cavity top-surface-emitting microlasers , 1993 .